Abdominal Imaging

, Volume 33, Issue 6, pp 729–735 | Cite as

Prostate cancer diagnosis: value of real-time elastography

  • Leo Pallwein
  • Fritz Aigner
  • Ralph Faschingbauer
  • Eva Pallwein
  • Germar Pinggera
  • Georg Bartsch
  • Georg Schaefer
  • Peter Struve
  • Ferdinand Frauscher


It is well known that prostate cancer (PCa) has a higher cell density than the surrounding normal tissue. This increased cell density leads to an alteration in tissue elasticity, which can be measured and displayed by sonographic-based elastography under real-time conditions. Real-time sonoelastography (RTE) has been proven capable to visualize PCa areas as “hard” lesions and therefore can be used for PCa detection and for targeted ultrasound-guided biopsy. Further applications such as the assessment of local extent of PCa should be considered. This overview describes the capabilities, advantages, and limitations of this new ultrasound technique for PCa diagnosis.


Prostate cancer—Real-time elastography—Strain imaging—Cancer imaging—Prostate cancer detection 


  1. 1.
    Jemal A, Siegel R, Ward E, et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66PubMedCrossRefGoogle Scholar
  2. 2.
    Gomez Veiga F, Ponce Reixa J, Barbagelata Lopez A, et al. (2006) Current role of PSA and other markers in the diagnosis of prostate cancer. Arch Esp Urol 59(10):1069–82 (Spanish)PubMedCrossRefGoogle Scholar
  3. 3.
    Sedelaar JP, Vijverberg PL, De Reijke TM, et al. (2001) Transrectal ultrasound in the diagnosis of prostate cancer: state of the art and perspectives. Eur Urol 40:275–284PubMedCrossRefGoogle Scholar
  4. 4.
    Chen ME, Troncoso P, Johnston DA, et al. (1997) Optimization of prostate biopsy strategy using computer based analysis. J Urol 158:2168–2175PubMedCrossRefGoogle Scholar
  5. 5.
    Motulsky H (1995) Intuitive biostatistics. Oxford University Press, New York, p 129Google Scholar
  6. 6.
    Norberg M, Egevad L, Holmberg L, et al. (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50:562–566PubMedCrossRefGoogle Scholar
  7. 7.
    Naughton CK, Miller DC, Mager DE, et al. (2000) A prospective randomized trial comparing 6 versus 12 prostate biopsy cores: impact on cancer detection. J Urol 164:388–392PubMedCrossRefGoogle Scholar
  8. 8.
    Loch T (2004) Computerized supported transrectal ultrasound (C-TRUS) in the diagnosis of prostate cancer. Urologe A 43(11):1377–1384PubMedCrossRefGoogle Scholar
  9. 9.
    Loch T (2007) Urologic imaging for localized prostate cancer in 2007. World J Urol 25(2):121–129 Epub 2007 Mar 21PubMedCrossRefGoogle Scholar
  10. 10.
    Chang JJ, Shinohara K, Bhargava V, et al. (1998) Prospective evaluation of lateral biopsies of the peripheral zone for prostate cancer detection. J Urol 160:2111–2114PubMedCrossRefGoogle Scholar
  11. 11.
    Jones JS, Patel A, Schoenfield L, et al. (2006) Saturation technique does not improve cancer detection as an initial prostate biopsy strategy. J Urol 175(2):485–488PubMedCrossRefGoogle Scholar
  12. 12.
    Byar DP, Mostofi FK (1972) Carcinoma of the prostate: prognostic evaluation of certain pathologic features in 208 radical prostatectomies. Examined by the step-section technique. Cancer 30(1):5–13PubMedCrossRefGoogle Scholar
  13. 13.
    Aigner F, Pallwein L, Pelzer A, et al. (2007) Value of magnetic resonance imaging in prostate cancer diagnosis. World J Urol 25(4):351–359 Epub 2007 Jun 14PubMedCrossRefGoogle Scholar
  14. 14.
    Frauscher F, Klauser A, Volgger H, Pallwein-Prettner L, Horninger W, Helweg G, Bartsch G, zur Nedden D (2002) Contrast-enhanced ultrasonography. In: Bruggmoser G, Mould RF, Tai THP, Mate TP (eds) Prostate cancer review. Munich, Zuckschwerdt VerlagGoogle Scholar
  15. 15.
    Frauscher F, Klauser A, Halpern EJ (2002) Advances in ultrasound for the detection of prostate cancer. Ultrasound Q 18:135–142PubMedCrossRefGoogle Scholar
  16. 16.
    Frauscher F, Klauser A, Halpern EJ, et al. (2001) Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet 357:1849–1850PubMedCrossRefGoogle Scholar
  17. 17.
    Frauscher F, Klauser A, Volgger H, et al. (2002) Comparison of contrast-enhanced targeted versus systematic biopsy of the prostate: impact on prostate cancer detection. J Urol 167:1648–1652PubMedCrossRefGoogle Scholar
  18. 18.
    Pallwein L, Mitterberger M, Struve P, et al. (2007) Real-Time elastography for prostate cancer detection: preliminary experience. BJU Int 100(1):42–46PubMedCrossRefGoogle Scholar
  19. 19.
    Pallwein L, Mitterberger M, Struve P, et al. (2007) Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol 17(9):2278–2285 Epub 2007 Mar 7PubMedCrossRefGoogle Scholar
  20. 20.
    Pallwein L, Mitterberger M, Pinggera G, Aigner F, Pedross F, Schurich M, Bartsch G, zur Nedden D, Frauscher F (2007) Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol [Epub ahead of print]Google Scholar
  21. 21.
    Ophir J, Cespedes I, Ponnekanti H, et al. (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134PubMedCrossRefGoogle Scholar
  22. 22.
    Krouskop TA, Wheeler TM, Kallel F, et al. (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20(4):260–274PubMedGoogle Scholar
  23. 23.
    Pesavento A, Perrey C, Krueger M., et al. (1999) A time efficient and accurate strain estimation concept for ultrasonic elastography using interactive phase zero estimation. IEEE Trans an Ultrason, Ferroelect& Freq Contr 46:1057–1067CrossRefGoogle Scholar
  24. 24.
    Frey H (2003) Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe 43:850–855PubMedCrossRefGoogle Scholar
  25. 25.
    Shiina TD, MM; Bamber JC Strain imaging using combined RF and envelope autocorrelation processing. Proceedings of 1996 IEEE Ultrasonics Symposium 4:1331–1336Google Scholar
  26. 26.
    Skovoroda AR, Agliamov SR (1995) [Reconstruction of elastic properties of soft biological tissues exposed to low frequency disruption] Biofizika 40(6):1329–1334 (Russian)PubMedGoogle Scholar
  27. 27.
    Konofagou EE, Ophir J, Kallel F, et al. (1997) stographic dynamic range expansion using variable applied strains. Ultrason Imaging 19(2):145–166PubMedGoogle Scholar
  28. 28.
    Konig K, Scheipers U, Pesavento A et al (2005) Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 174:115–117PubMedCrossRefGoogle Scholar
  29. 29.
    Sperandeo G, Sperandeo M, Morcaldi M, et al. (2003) Transrectal ultrasonography for the early diagnosis of adenocarcinoma of the prostate: a new maneuver designed to improve the differentiation of malignant and benign lesions. J Urol 169:607–610PubMedCrossRefGoogle Scholar
  30. 30.
    Sumura M, Shigeno K, Hyuga T, et al. (2007) Initial evaluation of prostate cancer with real-time elastography based on step-section pathologic analysis after radical prostatectomy: a preliminary study. Int J Urol 14(9):811–816PubMedCrossRefGoogle Scholar
  31. 31.
    Tsutsumi M, Miyagawa T, Matsumura T, et al. (2007) The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol 12(4):250–255 Epub 2007 Aug 20PubMedCrossRefGoogle Scholar
  32. 32.
    Miyanaga N, Akaza H, Yamakawa M, (2006) Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol 13(12):1514–1518PubMedCrossRefGoogle Scholar
  33. 33.
    Cochlin DL, Ganatra RH, Griffiths DF (2002) Elastography in the detection of prostatic cancer. Clin Radiol 57(11):1014–1020PubMedCrossRefGoogle Scholar
  34. 34.
    Pallwein L, Aigner F, Gradl J, Judmaier W, zur Nedden D, Frauscher F (2006) Early prostate cancer detection: sonoelastography and endorectal MRI-guided targeted biopsy. Radiology (Suppl) Abstract #1409 (SSJ05–05)Google Scholar
  35. 35.
    Debras B, Guillonneau B, Bougaran J, et al (1998) Prognostic significance of seminal vesicle invasion on the radical prostatectomy specimen. Rationale for seminal vesicle biopsies. Eur Urol 33:271–277PubMedCrossRefGoogle Scholar
  36. 36.
    Hull GW, Rabbani F, Abbas F, et al (2002) Cancer control with radical prostatectomy alone in 1000 consecutive patients. J Urol 167:528–534PubMedCrossRefGoogle Scholar
  37. 37.
    Aigner F, Pallwein L, Pallwein E, et al. (2007) Prostate cancer and extracapsular extension (ECE): assessment by sonoelastography in comparison to MRI-a preliminary study. Eur Rad Suppl (B676)Google Scholar
  38. 38.
    Ueno E, Tohno E, Shiina T (2007) Elasticity imaging: basic principles and role in assessing breast tumors. Nippon Rinsho 65(Suppl 6):314–317 Review (Japanese)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Leo Pallwein
    • 1
  • Fritz Aigner
    • 1
  • Ralph Faschingbauer
    • 1
  • Eva Pallwein
    • 1
  • Germar Pinggera
    • 2
  • Georg Bartsch
    • 2
  • Georg Schaefer
    • 3
  • Peter Struve
    • 1
  • Ferdinand Frauscher
    • 1
  1. 1.Department of RadiologyMedical University InnsbruckInnsbruckAustria
  2. 2.Department of UrologyMedical University InnsbruckInnsbruckAustria
  3. 3.Department of PathologyMedical University InnsbruckInnsbruckAustria

Personalised recommendations