Advertisement

Abdominal Imaging

, Volume 32, Issue 6, pp 758–771 | Cite as

Functional renal MR imaging: an overview

  • Henrik J. Michaely
  • Steven Sourbron
  • Olaf Dietrich
  • Ulrike Attenberger
  • Maximilian F. Reiser
  • Stefan O. Schoenberg
Article

Abstract

Due to its complementary information to standard morphological imaging, functional renal magnetic resonance imaging is a rapid growing field of radiology. This pictorial essay provides a comprehensive overview of state-of-the-art functional renal imaging techniques including renal magnetic resonance angiography, first pass renal perfusion, assessment of renal function, blood-oxygen level dependent imaging of the kidneys and diffusion-weighted imaging of the kidneys including diffusion-tensor imaging of the kidneys. Basic technical concepts for all sequences are laid out. As renal perfusion imaging becomes a clinical routine examination, particular attention is given to renal perfusion measurements and the potential postprocessing approaches. Advantages and drawbacks of the published methods are illustrated. Future applications of functional renal imaging are presented.

Keywords

Functional renal imaging Magnetic resonance Renal perfusion BOLD Diffusion-weighted imaging Diffusion-tensor imaging Magnetic resonance angiography Kidney 

References

  1. 1.
    Huang AJ, Lee VS, Rusinek H (2004) Functional renal MR imaging. Magn Reson Imaging Clin N Am 12:469–486, viGoogle Scholar
  2. 2.
    Michaely HJ, Herrmann KA, Nael K, et al. (2006) Functional renal imaging: nonvascular renal disease. Abdom Imaging Epub: Jan 30Google Scholar
  3. 3.
    Grenier N, Basseau F, Ries M, et al. (2003) Functional MRI of the kidney. Abdom Imaging 28:164–175PubMedCrossRefGoogle Scholar
  4. 4.
    Grenier N, Hauger O, Cimpean A, et al. (2006) Update of renal imaging. Semin Nucl Med 36(1):3–15PubMedCrossRefGoogle Scholar
  5. 5.
    Carvlin MJ, Arger PH, Kundel HL, et al. (1989) Use of Gd-DTPA and fast gradient-echo and spin-echo MR imaging to demonstrate renal function in the rabbit. Radiology 170:705–711PubMedGoogle Scholar
  6. 6.
    Prasad PV, Cannillo J, Chavez DR, et al. (1999) First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol 34:566–571PubMedCrossRefGoogle Scholar
  7. 7.
    Lee VS, Rusinek H, Noz ME, et al. (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227:289–294PubMedCrossRefGoogle Scholar
  8. 8.
    Prasad PV, Epstein FH (1999) Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int 55:294–298PubMedCrossRefGoogle Scholar
  9. 9.
    Prasad PV, Priatna A, Spokes K, et al. (2001) Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 13:744–747PubMedCrossRefGoogle Scholar
  10. 10.
    Prasad PV (2006) Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103:c58–c65PubMedCrossRefGoogle Scholar
  11. 11.
    Muller MF, Prasad PV, Bimmler D, et al. (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193:711–715PubMedGoogle Scholar
  12. 12.
    Thoeny HC, De Keyzer F, Oyen RH, et al. (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911–917PubMedCrossRefGoogle Scholar
  13. 13.
    Michaely HJ, Herrmann KA, Kramer H, et al. (2006) High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging 24:95–100PubMedCrossRefGoogle Scholar
  14. 14.
    Michaely HJ, Nael K, Schoenberg SO, et al. (2005) The feasibility of spatial high-resolution magnetic resonance angiography (MRA) of the renal arteries at 3.0 T. Rofo 177:800–804PubMedGoogle Scholar
  15. 15.
    Huppertz A, Rohrer M (2004) Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol 14(Suppl 5):M12–M18PubMedGoogle Scholar
  16. 16.
    Rohrer M, Bauer H, Mintorovitch J, et al. (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRefGoogle Scholar
  17. 17.
    Michaely HJ, Schoenberg SO, Oesingmann N, et al. (2006) Renal artery stenosis: functional assessment with dynamic MR perfusion measurements—feasibility study. Radiology 238:586–596PubMedCrossRefGoogle Scholar
  18. 18.
    Dujardin M, Sourbron S, Luypaert R, et al. (2005) Quantification of renal perfusion and function on a voxel-by-voxel basis: a feasibility study. Magn Reson Med 54:841–849PubMedCrossRefGoogle Scholar
  19. 19.
    Semelka RC, Corrigan K, Ascher SM, et al. (1994) Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 190:149–152PubMedGoogle Scholar
  20. 20.
    Schoenberg SO, Rieger JR, Michaely HJ, et al. (2006) Functional magnetic resonance imaging in renal artery stenosis. Abdom Imaging 31:200–212PubMedCrossRefGoogle Scholar
  21. 21.
    Michaely HJ, Dietrich O, Reiser MF, et al. (2006) Neue Konzepte für die funktionelle MRT bei Nierenerkrankungen. Der Nephrol 1:40–49CrossRefGoogle Scholar
  22. 22.
    Aumann S, Schoenberg SO, Just A, et al. (2003) Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 49:276–287PubMedCrossRefGoogle Scholar
  23. 23.
    Schoenberg SO, Aumann S, Just A, et al. (2003) Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis. Magn Reson Med 49:288–298PubMedCrossRefGoogle Scholar
  24. 24.
    Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland–Patlak plot technique. J Magn Reson Imaging 18:714–725PubMedCrossRefGoogle Scholar
  25. 25.
    Pedersen M, Shi Y, Anderson P, et al. (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517PubMedCrossRefGoogle Scholar
  26. 26.
    Annet L, Hermoye L, Peeters F, et al. (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849PubMedCrossRefGoogle Scholar
  27. 27.
    Grenier N, Hauger O, Cimpean A, et al. (2006) Update of renal imaging. Semin Nucl Med 36:3–15PubMedCrossRefGoogle Scholar
  28. 28.
    Liu AS, Xie JX (2003) Functional evaluation of normothermic ischemia and reperfusion injury in dog kidney by combining MR diffusion-weighted imaging and Gd-DTPA enhanced first-pass perfusion. J Magn Reson Imaging 17:683–693PubMedCrossRefGoogle Scholar
  29. 29.
    Ries M, Jones RA, Basseau F, et al. (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14:42–49PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Henrik J. Michaely
    • 1
  • Steven Sourbron
    • 1
  • Olaf Dietrich
    • 1
  • Ulrike Attenberger
    • 1
  • Maximilian F. Reiser
    • 1
  • Stefan O. Schoenberg
    • 1
  1. 1.Department of Clinical RadiologyUniversity Hospitals—Grosshadern, Ludwig-Maximilians-University MunichMunichGermany

Personalised recommendations