Advertisement

Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy

  • A. SörensenEmail author
  • M. Carles
  • H. Bunea
  • L. Majerus
  • C. Stoykow
  • N. H. Nicolay
  • N. E. Wiedenmann
  • P. Vaupel
  • P. T. Meyer
  • A. L. Grosu
  • M. Mix
Original Article
  • 53 Downloads
Part of the following topical collections:
  1. Oncology – Head and Neck

Abstract

Purpose

The aim of this study was to investigate whether textural features of tumour hypoxia, assessed with serial [18F]fluoromisonidazole (FMISO)-PET, were able to predict clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC, T1-4, N+, M0) during chemoradiotherapy (CRT).

Methods

In a preliminary evaluation of a prospective trial, tumour hypoxia was evaluated in 29 patients via serial FMISO-PET before and during CRT. All patients received an initial [18F]fluorodeoxyglucose (FDG)-PET before CRT, and tumour regions were defined on this FDG-PET. The first-order metrics tumour-to-background ratio (TBRmean, TBRmax, TBRpeak), coefficient of variation, total lesion uptake and integral non-uniformity were calculated for all scans. Further, 3 second-order (textural) features from two grey-level matrices were calculated, as well as differential non-uniformity (udiff). Prognostic value was examined by median split for group separation (GS) in Kaplan-Meier estimates and correlated with overall survival (OS), quantified via log-rank tests (p ≤ 0.05) and group-relative hazard ratios (HR).

Results

Within a median follow-up of 29.6 months (95% CI: 16.8–48.0 months), no first-order metrics predicted OS with a significant GS (all p > 0.05) on any FMISO-PET scan. Only udiff before and in week 2 during CRT (p = 0.03, HR = 10.8 and p = 0.05, HR = 5.2) and non-uniformity from grey-level run length matrix in week 2 separated prognostic groups (p = 0.05, HR = 5.3); lower values were correlated with better OS. Further, the decrease in udiff from before CRT to week 2 was correlated with better OS (p = 0.04, HR = 9.4). FDG-PET before CRT did not predict outcome in any measure.

Conclusions

Textural features on FMISO-PET scans before CRT, in week 2 and, to a limited degree, the change of features during CRT, were able to identify head and neck squamous cell carcinoma patients with better OS, suggesting that a higher homogeneity of the degree of hypoxia in tumours could correlate with a better outcome after CRT.

Keywords

Radiomics Hypoxia FMISO FDG HNSCC CRT 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.  https://doi.org/10.3322/canjclin.55.2.74.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pignon J, Bourhis J, Domenge C, Designé L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. Lancet. 2000;355:949–55.  https://doi.org/10.1016/S0140-6736(00)90011-4.CrossRefPubMedGoogle Scholar
  3. 3.
    Pignon J-P, le Maître A, Bourhis J. Meta-analyses of chemotherapy in head and neck cancer (MACH-NC): an update. Int J Radiat Oncol. 2007;69:S112–4.  https://doi.org/10.1016/j.ijrobp.2007.04.088.CrossRefGoogle Scholar
  4. 4.
    Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005;77:18–24.  https://doi.org/10.1016/j.radonc.2005.06.038.CrossRefPubMedGoogle Scholar
  5. 5.
    Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology. J Clin Oncol. 2006;24:2098–104.  https://doi.org/10.1200/JCO.2005.05.2878.CrossRefPubMedGoogle Scholar
  6. 6.
    Zips D, Zöphel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, et al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol. 2012;105:21–8.  https://doi.org/10.1016/j.radonc.2012.08.019.CrossRefPubMedGoogle Scholar
  7. 7.
    Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, et al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol. 2015;117:113–7.  https://doi.org/10.1016/j.radonc.2015.09.015.CrossRefPubMedGoogle Scholar
  8. 8.
    Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87.  https://doi.org/10.1038/nrclinonc.2012.171.CrossRefPubMedGoogle Scholar
  9. 9.
    Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol. 2006;80:151–6.  https://doi.org/10.1016/j.radonc.2006.07.033.CrossRefPubMedGoogle Scholar
  10. 10.
    Rajendran JG, Mankoff DA, Sullivan FO, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10:2245–52.CrossRefGoogle Scholar
  11. 11.
    Mönnich D, Welz S, Thorwarth D, Pfannenberg C, Reischl G, Mauz P-S, et al. Robustness of quantitative hypoxia PET image analysis for predicting local tumor control. Acta Oncol (Madr). 2015;54:1364–9.  https://doi.org/10.3109/0284186X.2015.1071496.CrossRefGoogle Scholar
  12. 12.
    Zschaeck S, Haase R, Abolmaali N, Perrin R, Stützer K, Appold S, et al. Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol (Madr). 2015;54:1355–63.  https://doi.org/10.3109/0284186X.2015.1074720.CrossRefGoogle Scholar
  13. 13.
    Bittner M-I, Wiedenmann N, Bucher S, Hentschel M, Mix M, Rücker G, et al. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy. Acta Oncol (Madr). 2016;55:1299–304.  https://doi.org/10.1080/0284186X.2016.1219046.CrossRefGoogle Scholar
  14. 14.
    Bittner M-I, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA, et al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol. 2013;108:511–6.  https://doi.org/10.1016/j.radonc.2013.06.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Eschmann SM, Paulsen F, Bedeshem C, Machulla H-J, Hehr T, Bamberg M, et al. Hypoxia-imaging with 18F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol. 2007;83:406–10.  https://doi.org/10.1016/j.radonc.2007.05.014.CrossRefPubMedGoogle Scholar
  16. 16.
    Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol. 2017;124:533–40.  https://doi.org/10.1016/j.radonc.2017.08.010.CrossRefPubMedGoogle Scholar
  17. 17.
    Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.  https://doi.org/10.2967/jnumed.114.144055.CrossRefGoogle Scholar
  18. 18.
    Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.  https://doi.org/10.2967/jnumed.113.129858.CrossRefGoogle Scholar
  19. 19.
    Lucia F, Visvikis D, Desseroit M-C, Miranda O, Malhaire J-P, Robin P, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:768–86.  https://doi.org/10.1007/s00259-017-3898-7.CrossRefGoogle Scholar
  20. 20.
    Reuzé S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8:43169–79.  https://doi.org/10.18632/oncotarget.17856.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheng NM, Fang YHD, Lee LY, JTC C, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2014;42:419–28.  https://doi.org/10.1007/s00259-014-2933-1.CrossRefPubMedGoogle Scholar
  22. 22.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges J-P, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.  https://doi.org/10.2967/jnumed.110.082404.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cheng N-M, Dean Fang Y-H, Tung-Chieh Chang J, Huang C-G, Tsan D-L, Ng S-H, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.  https://doi.org/10.2967/jnumed.112.119289.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsujikawa T, Rahman T, Yamamoto M, Yamada S, Tsuyoshi H, Kiyono Y, et al. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer. Ann Nucl Med. 2017;31:678–85.  https://doi.org/10.1007/s12149-017-1199-7.CrossRefPubMedGoogle Scholar
  25. 25.
    Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.  https://doi.org/10.2967/jnumed.112.107375.CrossRefPubMedGoogle Scholar
  26. 26.
    Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.  https://doi.org/10.1007/s13244-012-0196-6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJR. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.  https://doi.org/10.1007/s00259-012-2247-0.CrossRefPubMedGoogle Scholar
  28. 28.
    Zwanenburg A, Leger S, Vallières M, Löck S. Initiative for the IBS. Image biomarker standardisation initiative. Arxiv Prepr. 2016.  https://doi.org/10.17195/candat.2016.08.1.
  29. 29.
    Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96.  https://doi.org/10.1088/0031-9155/60/14/5471.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.  https://doi.org/10.1007/s00259-014-2961-x.CrossRefPubMedGoogle Scholar
  31. 31.
    Popescu LM, Matej S, Lewitt RM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. 2004 IEEE Nucl Sci Symp Conf Rec. 2005;6, IEEE:3536–40.  https://doi.org/10.1109/NSSMIC.2004.1466649.CrossRefGoogle Scholar
  32. 32.
    Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. 2006 IEEE Nucl Sci Symp. Conf Rec. 2006;3, IEEE:1715–22.  https://doi.org/10.1109/NSSMIC.2006.354229.CrossRefGoogle Scholar
  33. 33.
    Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35:1989–99.  https://doi.org/10.1007/s00259-008-0875-1.CrossRefPubMedGoogle Scholar
  34. 34.
    Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol. 2016;61:R150–66.  https://doi.org/10.1088/0031-9155/61/13/R150.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    National Electrical Manufacturers Association. NEMA Performance measurements of scintillation cameras. Washington DC: Standards Publication NU 1-1994; 1994.Google Scholar
  36. 36.
    Vallières M. MATLAB programming tools for radiomics analysis 2015. https://github.com/mvallieres/radiomics/ (accessed February 19, 2018).
  37. 37.
    Antunes J, Viswanath S, Rusu M, Valls L, Hoimes C, Avril N, et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol. 2016;9:155–62.  https://doi.org/10.1016/j.tranon.2016.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate : a practical and powerful approach to multiple testing author. J R Stat Soc Ser B. 1995;57:289–300.Google Scholar
  39. 39.
    Bayer C, Shi K, Astner ST, Maftei C-A, Vaupel P. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol. 2011;80:965–8.  https://doi.org/10.1016/j.ijrobp.2011.02.049.CrossRefGoogle Scholar
  40. 40.
    Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors. Strahlenther Onkol. 2012;188:616–27.  https://doi.org/10.1007/s00066-012-0085-4.CrossRefPubMedGoogle Scholar
  41. 41.
    Vaupel P, Shi K, Mayer A. Influence of diffusion limitations of PET tracers on imaging of tumor hypoxia. Strahlenther Onkol. 2018;194:S94.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  3. 3.German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK) Partner Site FreiburgFreiburgGermany
  4. 4.Department of Medical Imaging and Clinical Oncology, Nuclear Medicine Division, Faculty of Medicine and Health ScienceStellenbosch UniversityCape TownSouth Africa

Personalised recommendations