Advertisement

Three-year changes of cortical 18F-FDG in amnestic vs. non-amnestic sporadic early-onset Alzheimer’s disease

  • Matthieu VanhoutteEmail author
  • Franck Semah
  • Xavier Leclerc
  • Adeline Rollin Sillaire
  • Alice Jaillard
  • Grégory Kuchcinski
  • Xavier Delbeuck
  • Rachid Fahmi
  • Florence Pasquier
  • Renaud Lopes
Original Article
Part of the following topical collections:
  1. Neurology

Abstract

Purpose

To examine and compare longitudinal changes of cortical glucose metabolism in amnestic and non-amnestic sporadic forms of early-onset Alzheimer’s disease and assess potential associations with neuropsychological performance over a 3-year period time.

Methods

Eighty-two participants meeting criteria for early-onset (< 65 years) sporadic form of probable Alzheimer’s disease and presenting with a variety of clinical phenotypes (47 amnestic and 35 non-amnestic forms) were included at baseline and followed up for 1.44 ± 1.23 years. All of the participants underwent a work-up at baseline and every year during the follow-up period, which includes clinical examination, neuropsychological testing, genotyping, cerebrospinal fluid biomarker assays, and structural MRI and 18F-FDG PET. Vertex-wise partial volume-corrected glucose metabolic maps across the entire cortical surface were generated and longitudinally assessed together with the neuropsychological scores using linear mixed-effects modeling as a function of amnestic and non-amnestic sporadic forms of early-onset Alzheimer’s disease.

Results

Similar evolution patterns of glucose metabolic decline between amnestic and non-amnestic forms were observed in widespread neocortical cortices. However, only non-amnestic forms appeared to have a greater reduction of glucose metabolism in lateral orbitofrontal and bilateral medial temporal cortices associated with more severe declines of neuropsychological performance compared with amnestic forms. Furthermore, results suggest that glucose metabolic decline in amnestic forms would progress along an anterior-to-posterior axis, whereas glucose metabolic decline in non-amnestic forms would progress along a posterior-to-anterior axis.

Conclusions

We found differences in spatial distribution and temporal trajectory of glucose metabolic decline between amnestic and non-amnestic early-onset Alzheimer’s disease groups, suggesting that one might want to consider treating the two forms of the disease as two separate entities.

Keywords

Sporadic early-onset Alzheimer’s disease Longitudinal glucose metabolism Positron emission tomography Cognition Linear mixed-effects modeling 

Notes

Acknowledgements

The authors thank the participants and their families for their kind participation in the present study. We would also like to thank all the members of the Lille Young Onset Dementia study group for their respective contributions to the prospective COMAJ study. Lastly, we especially thank Dr. Jérôme Declerck (Siemens Molecular Imaging) for his advice on PET imaging.

This work was also supported through the LABEX (excellence laboratory, program investment for the future) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to Alzheimer disease), and the LiCEND.

Funding information

This research was funded by Siemens Healthineers as part of a French CIFRE grant for a neuroimaging PhD thesis (CONVENTION CIFRE No. 2015/1047).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. Rachid Fahmi is full-time employee of Siemens Medical Solutions USA, Inc.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The present study was approved by a local investigational review board (CPP Ile-de-France VI Groupe Hospitalier Pitié-Salpêtrière; reference 110-05). This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

259_2019_4519_MOESM1_ESM.png (251 kb)
ESM 1 (PNG 250 kb)
259_2019_4519_Fig6_ESM.png (1.8 mb)
ESM 2

(PNG 1796 kb)

259_2019_4519_MOESM2_ESM.tif (2.4 mb)
High Resolution Image (TIF 2438 kb)
259_2019_4519_MOESM3_ESM.pdf (60 kb)
ESM 3 (PDF 59 kb)
259_2019_4519_MOESM4_ESM.pdf (46 kb)
ESM 4 (PDF 45 kb)

References

  1. 1.
    Koedam EL, Lauffer V, van der Vlies AE, van der Flier WM, Scheltens P, Pijnenburg YA. Early-versus late-onset Alzheimer’s disease: more than age alone. J Alzheimer's Dis : JAD. 2010;19:1401–8.  https://doi.org/10.3233/jad-2010-1337.CrossRefGoogle Scholar
  2. 2.
    Mendez MF. Early-onset Alzheimer’s disease: nonamnestic subtypes and type 2 AD. Arch Med Res. 2012;43:677–85.  https://doi.org/10.1016/j.arcmed.2012.11.009.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ossenkoppele R, Cohn-Sheehy BI, La Joie R, Vogel JW, Moller C, Lehmann M, et al. Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer’s disease. Hum Brain Mapp. 2015.  https://doi.org/10.1002/hbm.22927.
  4. 4.
    Phillips JS, Da Re F, Dratch L, Xie SX, Irwin DJ, McMillan CT, et al. Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer’s disease. Neurobiol Aging. 2018;63:75–87.  https://doi.org/10.1016/j.neurobiolaging.2017.11.008.CrossRefPubMedGoogle Scholar
  5. 5.
    Xia C, Makaretz SJ, Caso C, McGinnis S, Gomperts SN, Sepulcre J, et al. Association of in vivo [18F]AV-1451 tau PET imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol. 2017;74:427–36.  https://doi.org/10.1001/jamaneurol.2016.5755.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Phillips JS, Da Re F, Irwin DJ, McMillan CT, Vaishnavi SN, Xie SX, et al. Longitudinal progression of grey matter atrophy in non-amnestic Alzheimer’s disease. Brain J Neurol. 2019;142:1701–22.  https://doi.org/10.1093/brain/awz091.CrossRefGoogle Scholar
  7. 7.
    Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.CrossRefGoogle Scholar
  8. 8.
    Vanhoutte M, Semah F, Rollin Sillaire A, Jaillard A, Petyt G, Kuchcinski G, et al. 18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer’s disease. Neurobiol Aging. 2017;59:184–96.  https://doi.org/10.1016/j.neurobiolaging.2017.08.009.CrossRefPubMedGoogle Scholar
  9. 9.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer's Dementia : the journal of the Alzheimer's Association. 2011;7:263–9.  https://doi.org/10.1016/j.jalz.2011.03.005.CrossRefGoogle Scholar
  10. 10.
    Lehmann S, Schraen S, Quadrio I, Paquet C, Bombois S, Delaby C, et al. Impact of harmonization of collection tubes on Alzheimer’s disease diagnosis. Alzheimers Dement. 2014;10:S390–S4. e2.CrossRefGoogle Scholar
  11. 11.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Se C, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.CrossRefGoogle Scholar
  12. 12.
    Crutch SJ, Schott JM, Rabinovici GD, Murray M, Snowden JS, van der Flier WM, et al. Consensus classification of posterior cortical atrophy. Alzheimer's Dementia : the journal of the Alzheimer's Association. 2017;13:870–84.  https://doi.org/10.1016/j.jalz.2017.01.014. CrossRefGoogle Scholar
  13. 13.
    Ossenkoppele R, Pijnenburg YA, Perry DC, Cohn-Sheehy BI, Scheltens NM, Vogel JW, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain J Neurol. 2015;138:2732–49.CrossRefGoogle Scholar
  14. 14.
    Vanhoutte M, Semah F, Lopes R, Jaillard A, Petyt G, Aziz AL, et al. Using EQ.PET to reduce reconstruction-dependent variations in [<sup>18</sup>F]FDG-PET brain imaging. Phys Med Biol. 2019.  https://doi.org/10.1088/1361-6560/ab35b4.
  15. 15.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18 F] FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103.CrossRefGoogle Scholar
  16. 16.
    Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48:63–72.  https://doi.org/10.1016/j.neuroimage.2009.06.060.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Quarantelli M, Berkouk K, Prinster A, Landeau B, Svarer C, Balkay L, et al. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J Nucl Med : official publication, Society of Nuclear Medicine. 2004;45:192–201.Google Scholar
  18. 18.
    Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage: Clinical. 2014;6:445–54.CrossRefGoogle Scholar
  19. 19.
    Küntzelmann A, Guenther T, Haberkorn U, Essig M, Giesel F, Henze R, et al. Impaired cerebral glucose metabolism in prodromal Alzheimer’s disease differs by regional intensity normalization. Neurosci Lett. 2013;534:12–7.CrossRefGoogle Scholar
  20. 20.
    Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage. 2011;57:19–21.CrossRefGoogle Scholar
  21. 21.
    Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61:1402–18.CrossRefGoogle Scholar
  22. 22.
    Hughes CP, Berg L, Danziger W, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72.CrossRefGoogle Scholar
  23. 23.
    Baddeley AD, Emslie H, Nimmo-Smith I. Doors and people: a test of visual and verbal recall and recognition: Thames Valley Test Company; 1994.Google Scholar
  24. 24.
    Deloche G, Hannequin D. DO 80: Epreuve de Dénomination Orale d’images. Paris: Editions du Centre de Psychologie Appliquée; 1997.Google Scholar
  25. 25.
    Lim CY, Tan PC, Koh C, Koh E, Guo H, Yusoff ND, et al. Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery-VMI): lessons from exploration of cultural variations in visual-motor integration performance of preschoolers. Child Care Health Dev. 2015;41:213–21.  https://doi.org/10.1111/cch.12190.CrossRefPubMedGoogle Scholar
  26. 26.
    Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB a frontal assessment battery at bedside. Neurology. 2000;55:1621–6.CrossRefGoogle Scholar
  27. 27.
    Godefroy O. Fonctions exécutives et pathologies neurologiques et psychiatriques: évaluation en pratique clinique: Groupe de Boeck; 2008.Google Scholar
  28. 28.
    Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR, Initiative AsDN. Statistical analysis of longitudinal neuroimage data with linear mixed effects models. NeuroImage. 2013;66:249–60.CrossRefGoogle Scholar
  29. 29.
    Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage. 2014;92:381–97.  https://doi.org/10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.CrossRefGoogle Scholar
  31. 31.
    Morey RD. Confidence intervals from normalized data: a correction to Cousineau (2005). reason. 2008;4:61–4.Google Scholar
  32. 32.
    Frost MA, Esposito F, Goebel R. Improved correspondence of resting-state networks after macroanatomical alignment. Hum Brain Mapp. 2014;35:673–82.  https://doi.org/10.1002/hbm.22191.CrossRefPubMedGoogle Scholar
  33. 33.
    Hagler DJ Jr, Saygin AP, Sereno MI. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage. 2006;33:1093–103.  https://doi.org/10.1016/j.neuroimage.2006.07.036.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chan D, Janssen JC, Whitwell JL, Watt HC, Jenkins R, Frost C, et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. Lancet. 2003;362:1121–2.CrossRefGoogle Scholar
  35. 35.
    Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging. 2011;32:1207–18.  https://doi.org/10.1016/j.neurobiolaging.2009.07.002.CrossRefPubMedGoogle Scholar
  36. 36.
    Migliaccio R, Agosta F, Possin KL, Canu E, Filippi M, Rabinovici GD, et al. Mapping the progression of atrophy in early- and late-onset Alzheimer’s disease. J Alzheimer's Dis : JAD. 2015;46:351–64.  https://doi.org/10.3233/jad-142292.CrossRefGoogle Scholar
  37. 37.
    Haxby JV, Grady CL, Koss E, Horwitz B, Heston L, Schapiro M, et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol. 1990;47:753–60.CrossRefGoogle Scholar
  38. 38.
    Jacobs D, Sano M, Marder K, Bell K, Bylsma F, Lafleche G, et al. Age at onset of Alzheimer’s disease: relation to pattern of cognitive dysfunction and rate of decline. Neurology. 1994;44:1215–20.CrossRefGoogle Scholar
  39. 39.
    Koss E, Edland S, Fillenbaum G, Mohs R, Clark C, Galasko D, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer’s disease a CERAD analysis, part XII. Neurology. 1996;46:136–41.CrossRefGoogle Scholar
  40. 40.
    Cho H, Jeon S, Kang SJ, Lee JM, Lee JH, Kim GH, et al. Longitudinal changes of cortical thickness in early- versus late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34:1921.e9–e15.  https://doi.org/10.1016/j.neurobiolaging.2013.01.004.CrossRefGoogle Scholar
  41. 41.
    Cho H, Seo SW, Kim JH, Kim C, Ye BS, Kim GH, et al. Changes in subcortical structures in early- versus late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34:1740–7.  https://doi.org/10.1016/j.neurobiolaging.2013.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.CrossRefGoogle Scholar
  43. 43.
    Ossenkoppele R, Tolboom N, Foster-Dingley JC, Adriaanse SF, Boellaard R, Yaqub M, et al. Longitudinal imaging of Alzheimer pathology using [11C] PIB,[18F] FDDNP and [18F] FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.CrossRefGoogle Scholar
  44. 44.
    Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–8.CrossRefGoogle Scholar
  45. 45.
    Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology. 1999;52:1158–65.CrossRefGoogle Scholar
  46. 46.
    Bischof GN, Jessen F, Fliessbach K, Dronse J, Hammes J, Neumaier B, et al. Impact of tau and amyloid burden on glucose metabolism in Alzheimer’s disease. Ann Clin Transl Neurol. 2016;3:934–9.  https://doi.org/10.1002/acn3.339.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cho H, Choi JY, Lee SH, Lee JH, Choi YC, Ryu YH, et al. Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer’s disease. Neurobiol Aging. 2017;53:103–11.  https://doi.org/10.1016/j.neurobiolaging.2017.01.024.CrossRefPubMedGoogle Scholar
  48. 48.
    Dronse J, Fliessbach K, Bischof GN, von Reutern B, Faber J, Hammes J, et al. In vivo patterns of tau pathology, amyloid-β burden, and neuronal dysfunction in clinical variants of Alzheimer’s disease. J Alzheimers Dis. 2017;55:465–71.CrossRefGoogle Scholar
  49. 49.
    Hanseeuw BJ, Betensky RA, Schultz AP, Papp KV, Mormino EC, Sepulcre J, et al. Fluorodeoxyglucose metabolism associated with tau-amyloid interaction predicts memory decline. Ann Neurol. 2017;81:583–96.CrossRefGoogle Scholar
  50. 50.
    Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain J Neurol. 2016;139:1551–67.  https://doi.org/10.1093/brain/aww027.CrossRefGoogle Scholar
  51. 51.
    Whitwell JL, Graff-Radford J, Tosakulwong N, Weigand SD, Machulda M, Senjem ML, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 2018;14(8):1005–14.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10:785–96.CrossRefGoogle Scholar
  53. 53.
    Sintini I, Martin PR, Graff-Radford J, Senjem ML, Schwarz CG, Machulda MM, et al. Longitudinal tau-PET uptake and atrophy in atypical Alzheimer’s disease. NeuroImage Clin. 2019;23:101823.  https://doi.org/10.1016/j.nicl.2019.101823.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, et al. Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain J Neurol. 2019;142:1093–107.  https://doi.org/10.1093/brain/awz026.CrossRefGoogle Scholar
  55. 55.
    Ossenkoppele R, Iaccarino L, Schonhaut DR, Brown JA, La Joie R, O'Neil JP, et al. Tau covariance patterns in Alzheimer’s disease patients match intrinsic connectivity networks in the healthy brain. NeuroImage Clin. 2019;23:101848.  https://doi.org/10.1016/j.nicl.2019.101848.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.  https://doi.org/10.1016/j.neuron.2009.03.024.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.  https://doi.org/10.1016/j.neuron.2012.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gour N, Felician O, Didic M, Koric L, Gueriot C, Chanoine V, et al. Functional connectivity changes differ in early and late-onset Alzheimer’s disease. Hum Brain Mapp. 2014;35:2978–94.  https://doi.org/10.1002/hbm.22379.CrossRefPubMedGoogle Scholar
  59. 59.
    Lehmann M, Madison C, Ghosh PM, Miller ZA, Greicius MD, Kramer JH, et al. Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiol Aging. 2015;36:2678–86.  https://doi.org/10.1016/j.neurobiolaging.2015.06.029.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Whitwell JL, Jones DT, Duffy JR, Strand EA, Machulda MM, Przybelski SA, et al. Working memory and language network dysfunctions in logopenic aphasia: a task-free fMRI comparison with Alzheimer’s dementia. Neurobiol Aging. 2015;36:1245–52.  https://doi.org/10.1016/j.neurobiolaging.2014.12.013.CrossRefPubMedGoogle Scholar
  61. 61.
    Lehmann M, Ghosh PM, Madison C, Laforce R, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain J Neurol. 2013;136:844–58.CrossRefGoogle Scholar
  62. 62.
    van Vliet D, de Vugt ME, Bakker C, Pijnenburg YA, Vernooij-Dassen MJ, Koopmans RT, et al. Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychol Med. 2013;43:423–32.  https://doi.org/10.1017/s0033291712001122.CrossRefPubMedGoogle Scholar
  63. 63.
    Koedam EL, Pijnenburg YA, Deeg DJ, Baak MM, van der Vlies AE, Scheltens P, et al. Early-onset dementia is associated with higher mortality. Dement Geriatr Cogn Disord. 2008;26:147–52.  https://doi.org/10.1159/000149585.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthieu Vanhoutte
    • 1
    • 2
    • 3
    Email author
  • Franck Semah
    • 1
    • 2
  • Xavier Leclerc
    • 1
    • 3
  • Adeline Rollin Sillaire
    • 4
    • 5
  • Alice Jaillard
    • 1
    • 2
  • Grégory Kuchcinski
    • 1
    • 3
  • Xavier Delbeuck
    • 5
    • 6
  • Rachid Fahmi
    • 7
  • Florence Pasquier
    • 4
    • 5
  • Renaud Lopes
    • 1
    • 3
  1. 1.Inserm U1171, CHU LilleUniversity of LilleLilleFrance
  2. 2.Department of Nuclear MedicineCHU LilleLilleFrance
  3. 3.Department of NeuroradiologyCHU LilleLilleFrance
  4. 4.Department of NeurologyCHU LilleLilleFrance
  5. 5.Inserm U1171, CHU Lille, Memory Center, DISTALZUniversity of LilleLilleFrance
  6. 6.Department of NeuropsychologyCHU LilleLilleFrance
  7. 7.Siemens Medical Solutions USA, Inc., Molecular ImagingKnoxvilleUSA

Personalised recommendations