Advertisement

EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma

  • Luca GiovanellaEmail author
  • Giorgio Treglia
  • Ioannis Iakovou
  • Jasna Mihailovic
  • Frederik A. Verburg
  • Markus Luster
Guidelines
Part of the following topical collections:
  1. Oncology – Head and Neck

Abstract

Background

Medullary thyroid carcinoma (MTC) is a malignant tumour derived from the para-follicular thyroid C cells. It may occur in sporadic or hereditary forms and surgery represent the primary cure.

Methods

Ultrasound examination and, in selected cases, cross-sectional anatomic imaging procedures, are adopted to stage the disease before primary surgery while different anatomic/morphologic and functional/molecular imaging procedures can be adopted in detecting persistent/recurrent disease. Positron emitting radiopharmaceuticals including fluorine-18 fluorodeoxyglucose (18F-FDG), fluorine-18 dihydroxyphenylalanine (18F-FDOPA) and somatostatin analogues labelled with gallium-68 (68Ga-SSA) tracks different metabolic pathways or receptor expression/functioning, and proved to be useful in detecting MTC recurrences/metastasis.

Conclusions

This practice guideline from the Thyroid Committee of the European Association of Nuclear Medicine (EANM), with involvement of external experts, provides recommendations based on updated literature’s evidences. The purpose of this practice guideline is to assist imaging specialists and clinicians in recommending, performing and interpreting the results of PET/CT with various radiopharmaceuticals in patients with MTC.

Keywords

Medullary thyroid carcinoma PET/CT Fluorodeoxyglucose Dihydroxyphenylalanine Somatostatin 

Notes

Acknowledgements

This practice guideline summarizes the views of EANM Thyroid Committee and produces recommendations for which the EANM cannot be considered responsible. The recommendations should be adopted in the context of good nuclear medicine practice of nuclear and do not substitute national and international regulations. Before approval, this practice guideline was available to all EANM Committees and EANM National Societies of Nuclear Medicine. All comments, criticisms and suggestions have been considered for this EANM practice guideline.

Compliance with ethical standards

Conflict of interest

L.G. is member of Roche Diagnostics advisory board and received research grants and speaker fees from Roche Diagnostics, IBSA and Sanofi-Genzyme. F.A.V. has received research grants from Sanofi-Genzyme and speaker honoraria from Sanofi-Genzyme, Diasorin and Jubilant Draximage. M.L. has received research grants and speaker honoraria from Sanofi-Genzyme, Bayer and Astra Zeneca. G.T declares that he has no conflict of interest. I.I declares that he has no conflict of interest. JM declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Trimboli P, Giovanella L, Crescenzi A, Romanelli F, Valabrega S, Spriano G, et al. Medullary thyroid cancer diagnosis: an appraisal. Head Neck. 2014;36:1216–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Guyetant S, Rousselet MC, Durigon M, Chappard D, Franc B, Guerin O, et al. Sex-related C-cell hyperplasia in the normal human thyroid: a quantitative autopsy study. J Clin Endocrinol Metab. 1997;82:42–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Marsh DJ, Learoyd DL, Andrew SD, Krishnan L, Pojer R, Richardson AL, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin Endocrinol. 1996;44:249–57.CrossRefGoogle Scholar
  6. 6.
    Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97:E2031–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98:E364–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Leboulleux S, Baudin E, Travagli JP, Schlumberger M. Medullary thyroid carcinoma. Clin Endocrinol. 2004;61:299–310.CrossRefGoogle Scholar
  9. 9.
    Machens A, Hinze R, Thomusch O, Dralle H. Pattern of nodal metastasis for primary and reoperative thyroid cancer. World J Surg. 2002;26:22–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Moley JF. Medullary thyroid carcinoma: management of lymph node metastases. J Natl Compr Cancer Netw. 2010;8:549–56.CrossRefGoogle Scholar
  11. 11.
    Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC study group. Groupe d’etude des tumeurs a calcitonine. Clin Endocrinol. 1998;48:265–73.CrossRefGoogle Scholar
  12. 12.
    Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25:567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Trimboli P, Seregni E, Treglia G, Alevizaki M, Giovanella L. Procalcitonin for detecting medullary thyroid carcinoma: a systematic review. Endocr Relat Cancer. 2015;22:R157–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Trimboli P, Giovanella L. Serum calcitonin negative medullary thyroid carcinoma: a systematic review of the literature. Clin Chem Lab Med. 2015;53:1507–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Trimboli P, Treglia G, Guidobaldi L, Romanelli F, Nigri G, Valabrega S, et al. Detection rate of FNA cytology in medullary thyroid carcinoma: a meta-analysis. Clin Endocrinol. 2015;82:280–5.CrossRefGoogle Scholar
  16. 16.
    Trimboli P, Guidobaldi L, Bongiovanni M, Crescenzi A, Alevizaki M, Giovanella L. Use of fine-needle aspirate calcitonin to detect medullary thyroid carcinoma: a systematic review. Diagn Cytopathol. 2016;44:45–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Chernock RD, Hagemann IS. Molecular pathology of hereditary and sporadic medullary thyroid carcinomas. Am J Clin Pathol. 2015;143:768–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Khurana R, Agarwal A, Bajpai VK, Verma N, Sharma AK, Gupta RP, et al. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145:5465–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Mendelsohn G, Wells SA Jr, Baylin SB. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer. 1984;54:657–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Trimboli P, Giovanella L, Valabrega S, Andrioli M, Baldelli R, Cremonini N, et al. Ultrasound features of medullary thyroid carcinoma correlate with cancer aggressiveness: a retrospective multicenter study. J Exp Clin Cancer Res. 2014;33:87.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Skoura E. Depicting medullary thyroid cancer recurrence: the past and the future of nuclear medicine imaging. Int J Endocrinol Metab. 2013;11:e8156.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Rufini V, Castaldi P, Treglia G, Perotti G, Gross MD, Al-Nahhas A, et al. Nuclear medicine procedures in the diagnosis and therapy of medullary thyroid carcinoma. Biomed Pharmacother. 2008;62:139–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Clarke SE, Lazarus CR, Wraight P, Sampson C, Maisey MN. Pentavalent [99mTc]DMSA, [131I]MIBG, and [99mTc]MDP–an evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med. 1988;29:33–8.PubMedGoogle Scholar
  24. 24.
    Frank-Raue K, Bihl H, Dorr U, Buhr H, Ziegler R, Raue F. Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol. 1995;42:31–7.CrossRefGoogle Scholar
  25. 25.
    Kwekkeboom DJ, Reubi JC, Lamberts SW, Bruining HA, Mulder AH, Oei HY, et al. In vivo somatostatin receptor imaging in medullary thyroid carcinoma. J Clin Endocrinol Metab. 1993;76:1413–7.PubMedGoogle Scholar
  26. 26.
    Verga U, Muratori F, Di Sacco G, Banfi F, Libroia A. The role of radiopharmaceuticals MIBG and (V) DMSA in the diagnosis of medullary thyroid carcinoma. Henry Ford Hosp Med J. 1989;37:175–7.PubMedGoogle Scholar
  27. 27.
    Ozkan ZG, Kuyumcu S, Uzum AK, Gecer MF, Ozel S, Aral F, et al. Comparison of 68Ga-DOTATATE PET-CT, 18F-FDG PET-CT and 99mTc-(V)DMSA scintigraphy in the detection of recurrent or metastatic medullary thyroid carcinoma. Nucl Med Commun. 2015;36:242–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Arslan N, Ilgan S, Yuksel D, Serdengecti M, Bulakbasi N, Ugur O, et al. Comparison of In-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection of medullary thyroid tumor foci in patients with elevated levels of tumor markers after surgery. Clin Nucl Med. 2001;26:683–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Baudin E, Lumbroso J, Schlumberger M, Leclere J, Giammarile F, Gardet P, et al. Comparison of octreotide scintigraphy and conventional imaging in medullary thyroid carcinoma. J Nucl Med. 1996;37:912–6.PubMedGoogle Scholar
  30. 30.
    Kaltsas G, Korbonits M, Heintz E, Mukherjee JJ, Jenkins PJ, Chew SL, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Clin Endocrinol Metab. 2001;86:895–902.PubMedCrossRefGoogle Scholar
  31. 31.
    Maiza JC, Grunenwald S, Otal P, Vezzosi D, Bennet A, Caron P. Use of 131 IMIBG therapy in MIBG-positive metastatic medullary thyroid carcinoma. Thyroid. 2012;22:654–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Giraudet AL, Vanel D, Leboulleux S, Auperin A, Dromain C, Chami L, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007;92:4185–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588–601.PubMedCrossRefGoogle Scholar
  35. 35.
    Treglia G, Castaldi P, Villani MF, Perotti G, Filice A, Ambrosini V, et al. Comparison of different positron emission tomography tracers in patients with recurrent medullary thyroid carcinoma: our experience and a review of the literature. Recent Results Cancer Res. 2013;194:385–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Treglia G, Muoio B, Giovanella L, Salvatori M. The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview. Eur Arch Otorhinolaryngol. 2013;270:1783–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Treglia G, Giovanella L, Rufini V. PET and PET/CT imaging in thyroid and adrenal diseases: an update. Hormones. 2013;12:327–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Treglia G, Rufini V, Salvatori M, Giordano A, Giovanella L. PET imaging in recurrent medullary thyroid carcinoma. Int J Mol Imaging. 2012;2012:324686.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rufini V, Treglia G, Perotti G, Leccisotti L, Calcagni ML, Rubello D. Role of PET in medullary thyroid carcinoma. Minerva Endocrinol. 2008;33:67–73.PubMedGoogle Scholar
  40. 40.
    Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun. 2012;33(7):775–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Treglia G, Stefanelli A, Castaldi P, Rufini V. A standardized dual-phase 18F-DOPA PET/CT protocol in the detection of medullary thyroid cancer. Nucl Med Commun. 2013;34(2):185–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G, et al. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun. 2013;34(12):1141–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Chondrogiannis S, Grassetto G, Marzola MC, Rampin L, Massaro A, Bellan E, et al. 18F-DOPA PET/CT biodistribution consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012;33(2):179–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Treglia G, Cocciolillo F, Di Nardo F, Poscia A, de Waure C, Giordano A, et al. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad Radiol. 2012;19(10):1290–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Treglia G, Tamburello A, Giovanella L. Detection rate of somatostatin receptor PET in patients with recurrent medullary thyroid carcinoma: a systematic review and a meta-analysis. Hormones (Athens). 2017;16(4):262–72.Google Scholar
  46. 46.
    Traub-Weidinger T, Putzer D, von Guggenberg E, Dobrozemsky G, Nilica B, Kendler D, et al. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: somatostatin receptors and glucose metabolism. Eur J Nucl Med Mol Imaging. 2015;42(13):1995–2001.PubMedCrossRefGoogle Scholar
  47. 47.
    Bodet-Milin C, Faivre-Chauvet A, Carlier T, Rauscher A, Bourgeois M, Cerato E, et al. Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the Pretargeting parameters in a first-in-human trial. J Nucl Med. 2016;57(10):1505–11.PubMedCrossRefGoogle Scholar
  48. 48.
    Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48(4):501–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Werner RA, Schmid JS, Higuchi T, Javadi MS, Rowe SP, Märkl B, et al. Predictive value of FDG-PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J Nucl Med. 2018;59(5):756–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Romero-Lluch AR, Cuenca-Cuenca JI, Guerrero-Vázquez R, Martínez-Ortega AJ, Tirado-Hospital JL, Borrego-Dorado I, et al. Diagnostic utility of PET/CT with (18)F-DOPA and (18)F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff. Eur J Nucl Med Mol Imaging. 2017;44(12):2004–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Putzer D, Kroiss A, Waitz D, Gabriel M, Traub-Weidinger T, Uprimny C, et al. Somatostatin receptor PET in neuroendocrine tumours: 68Ga-DOTA0,Tyr3-octreotide versus 68Ga-DOTA0-lanreotide. Eur J Nucl Med Mol Imaging. 2013;40(3):364–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Łapińska G, Bryszewska M, Fijołek-Warszewska A, Kozłowicz-Gudzińska I, Ochman P, Sackiewicz-Słaby A. The diagnostic role of 68Ga-DOTATATE PET/CT in the detection of neuroendocrine tumours. Nucl Med Rev Cent East Eur. 2011;14(1):16–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Pałyga I, Kowalska A, Gąsior-Perczak D, Tarnawska-Pierścińska M, Słuszniak J, Sygut J, et al. The role of PET-CT scan with somatostatin analogue labelled with gallium-68 (68Ga-DOTA-TATE PET-CT) in diagnosing patients with disseminated medullary thyroid carcinoma (MTC). Endokrynol Pol. 2010;61(5):507–11.Google Scholar
  54. 54.
    Golubić AT, Pasini Nemir E, Žuvić M, Mutvar A, Kusačić Kuna S, Despot M, et al. The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun. 2017;38(7):636–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Archier A, Heimburger C, Guerin C, Morange I, Palazzo FF, Henry JF, et al. (18)F-DOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2016;43(6):1027–33.PubMedCrossRefGoogle Scholar
  56. 56.
    Gómez-Camarero P, Ortiz-de Tena A, Borrego-Dorado I, Vázquez-Albertino RJ, Navarro-González E, Ruiz-Franco-Baux JV, et al. Evaluation of efficacy and clinical impact of 18F-FDG-PET in the diagnosis of recurrent medullary thyroid cancer with increased calcitonin and negative imaging test. Rev Esp Med Nucl Imagen Mol. 2012;31(5):261–6.CrossRefGoogle Scholar
  57. 57.
    Skoura E, Rondogianni P, Alevizaki M, Tzanela M, Tsagarakis S, Piaditis G, et al. Role of [(18)F]FDG-PET/CT in the detection of occult recurrent medullary thyroid cancer. Nucl Med Commun. 2010;31(6):567–75.Google Scholar
  58. 58.
    Rasul S, Hartenbach S, Rebhan K, Göllner A, Karanikas G, Mayerhoefer M, et al. [18F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery. EurJ Nucl Med Mol Imaging. 2018;45(12):2159–69.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Treglia G, Villani MF, Giordano A, Rufini V. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis. Endocrine. 2012;42:535–45.PubMedCrossRefGoogle Scholar
  60. 60.
    Kauhanen S, Schalin-Jäntti C, Seppänen M, Kajander S, Virtanen S, Schildt J, et al. Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid cancer. J Nucl Med. 2011;52(12):1855–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Ozkan E, Soydal C, Kucuk ON, Ibis E, Erbay G. Impact of 18F-FDG PET/CT for detecting recurrence of medullary thyroid carcinoma. Nucl Med Commun. 2011;32(12):1162–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Jang HW, Choi JY, Lee JI, Kim HK, Shin HW, Shin JH, et al. Localization of medullary thyroid carcinoma after surgery using (11)C-methionine PET/CT: comparison with (18)F-FDG PET/CT. Endocr J. 2010;57(12):1045–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol. 2010;28(14):2323–30.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Skoura E, Rondogianni P, Alevizaki M, Tzanela M, Tsagarakis S, Piaditis G, et al. Role of [(18)F]FDG-PET/CT in the detection of occult recurrent medullary thyroid cancer. Nucl Med Commun. 2010;31(6):567–75.Google Scholar
  66. 66.
    Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A, Ambrosini V, et al. Dual PET/CT with (18)F-DOPA and (18)F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: comparison with conventional imaging. Eur J Surg Oncol. 2010;36(4):414–21.CrossRefGoogle Scholar
  67. 67.
    Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL, et al. The prognostic value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in patients with suspected residual or recurrent medullary thyroid carcinoma. Mol Imaging Biol. 2010;12(5):547–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G, Nader M, et al. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol. 2009;19(6):1425–34.PubMedCrossRefGoogle Scholar
  69. 69.
    Rubello D, Rampin L, Nanni C, Banti E, Ferdeghini M, Fanti S, et al. The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol. 2008;34(5):581–6.CrossRefGoogle Scholar
  70. 70.
    Oudoux A, Salaun PY, Bournaud C, Campion L, Ansquer C, Rousseau C, et al. Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab. 2007;92(12):4590–7.CrossRefGoogle Scholar
  71. 71.
    Ong SC, Schöder H, Patel SG, Tabangay-Lim IM, Doddamane I, Gönen M, et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J Nucl Med. 2007;48(4):501–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Caobelli F, Chiaravalloti A, Evangelista L, Saladini G, Schillaci O, Vadrucci M, et al. Young AIMN Working Group. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid. Ann Nucl Med. 2018;32(1):7–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Sesti A, Mayerhoefer M, Weber M, Anner P, Wadsak W, Dudczak R et al. Relevance of calcitonin cut-off in the follow-up of medullary thyroid carcinoma for conventional imaging and 18-fluorine-flurodihydroxyphenylalanine PET. Anticancer res 2014;34:6647–54.Google Scholar
  74. 74.
    Treglia G, Aktolun C, Chiti A, Frangos S, Giovanella L, Hoffmann M, et al. EANM and the EANM thyroid committee. The 2015 revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma: the “evidence-based” refusal to endorse them by EANM due to the “not evidence-based” marginalization of the role of nuclear medicine. Eur J Nucl Med Mol Imaging. 2016;43(8):1486–90.PubMedCrossRefGoogle Scholar
  75. 75.
    Luster M, Karges W, Zeich K, Pauls S, Verburg FA, Dralle H, et al. Clinical value of 18-fluorine-fluorodihydroxyphenylalanine positron emission tomography/computed tomography in the follow-up of medullary thyroid carcinoma. Thyroid. 2010;20(5):527–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun. 2012;33(7):775–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamaga LYI, Cunha ML, Campos Neto GC, Garcia MRT, Yang JH, Camacho CP, et al. (68)Ga-DOTATATE PET/CT in recurrent medullary thyroid carcinoma: a lesion-by-lesion comparison with (111)In-octreotide SPECT/CT and conventional imaging. Eur J Nucl Med Mol Imaging. 2017;44(10):1695–701.PubMedCrossRefGoogle Scholar
  78. 78.
    Budiawan H, Salavati A, Kulkarni HR, Baum RP. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)yttrium and (177)lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging. 2013;4(1):39–52.Google Scholar
  79. 79.
    Tran K, Khan S, Taghizadehasl M, Palazzo F, Frilling A, Todd JF, et al. Gallium-68 dotatate PET/CT is superior to other imaging modalities in the detection of medullary carcinoma of the thyroid in the presence of high serum calcitonin. Hell J Nucl Med. 2015;18(1):19–24.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinic for Nuclear Medicine and Thyroid Competence CentreImaging Institute of Southern SwitzerlandBellinzonaSwitzerland
  2. 2.Academic Department of Nuclear MedicinePapageorgiu HospitalThessalonikiGreece
  3. 3.Department of Nuclear MedicineOncology Institute of VojvodinaSremska KamenicaSerbia
  4. 4.Department of Nuclear MedicineUniversity Hospital MarburgMarburgGermany

Personalised recommendations