Advertisement

Effect of (Z)-isomer content on [11C]ABP688 binding potential in humans

  • Kelly SmartEmail author
  • Sylvia M. L. Cox
  • Alexey Kostikov
  • Aliaksandr Shalai
  • Stephanie G. Scala
  • Maria Tippler
  • Natalia Jaworska
  • Michel Boivin
  • Jean R. Séguin
  • Chawki Benkelfat
  • Marco Leyton
Short Communication

Abstract

Purpose

To determine how the low-affinity (Z)-isomer of the radiotracer [11C]ABP688 affects binding potential values in vivo in humans.

Methods

High-resolution [11C]ABP688 PET scans were acquired on 74 healthy volunteers (25 male, 49 female, mean age 20 ± 3.0). The relative contents of (E)- and (Z)-isomers were determined prior to injection using analytical high-performance liquid chromatography [rt(E) = 10 min, rt(Z) = 8.5 min]. Mean binding potential [BPND = fND * (Bavail/KD)] values were calculated in the striatum, limbic regions, and prefrontal cortex using the simplified reference tissue model with cerebellar grey matter as reference.

Results

Mean ± SD (E)-isomer content in [11C]ABP688 production was 92 ± 3.8% (range 78–97%). Percent (E)-isomer was positively correlated with BPND in the striatum (ρ = 0.28, p = 0.015) and limbic regions (ρ = 0.25, p = 0.036). In multiple regression analysis, sex (β = 0.39, p = 0.001) and (E)-isomer content (β = 0.23, p = 0.040) were significant predictors of BPND.

Conclusions

Even modest levels of (Z)-[11C]ABP688 can reduce estimates of tracer binding in vivo. Future studies should use production methods that enrich levels of (E)-[11C]ABP688, report tracer isomer ratios, and account for this factor in their analyses.

Keywords

Metabotropic glutamate receptors mGluR5 Positron emission tomography PET [11C]ABP688 

Notes

Acknowledgements

This work was supported by grants from the Canadian Institutes for Health Research MOP-133537 (ML), 119509 (CB and ML), 44072 (JRS) and 97910 (JRS); a grant from the Fonds de Recherche en Santé du Québec (FRQS) ERA-NET (ML); FRQS via fellowships and grants 981055 and 991027 (JRS); the Social Sciences and Humanities Research Council of Canada, grants 839-2000-1008 and 410-99-1048 (JRS); and the Fonds de recherche du Québec – Société et culture, grants 2002-RS-79238 and 2009-RG-124779 (JRS).

Compliance with ethical standards

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the Research Ethics Board of the Montreal Neurological Institute, McGill University and the Ethics Committee of the CHU Sainte-Justine Research Center, and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study. This article does not contain any studies with animals performed by any of the authors.

References

  1. 1.
    Milella MS, Marengo L, Larcher K, Fotros A, Dagher A, Rosa-Neto P, et al. Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [(11)C]ABP688 study. NeuroImage. 2014;98:195–202.CrossRefGoogle Scholar
  2. 2.
    Ametamey SM, Kessler LJ, Honer M, Wyss MT, Buck A, Hintermann S, et al. Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med. 2006;47:698–705.PubMedGoogle Scholar
  3. 3.
    Kawamura K, Yamasaki T, Kumata K, Furutsuka K, Takei M, Wakizaka H, et al. Binding potential of (E)-[11C]ABP688 to metabotropic glutamate receptor subtype 5 is decreased by the inclusion of its 11C-labelled Z-isomer. Nucl Med Biol. 2014;41:17–23.CrossRefGoogle Scholar
  4. 4.
    Jolly D, Hopewell R, Kovacevic M, Li QY, Soucy J-P, Kostikov A. Development of “[ 11 C]kits” for a fast, efficient and reliable production of carbon-11 labeled radiopharmaceuticals for Positron Emission Tomography. Appl Radiat Isot. 2017;121:76–81.CrossRefGoogle Scholar
  5. 5.
    Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, et al. Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A. 2013;110:737–42.CrossRefGoogle Scholar
  6. 6.
    Smart K, Cox SML, Scala SG, Tippler M, Jaworska N, Boivin M, et al. High resolution [11C]ABP688 imaging of mGluR5 in healthy volunteers: sex differences and test-retest variability. Poster presentation at the XII International Symposium of Functional Neuroreceptor Mapping of the Living Brain, London, United Kingdom; 2018.Google Scholar
  7. 7.
    Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11C]ABP688 and PET imaging study in depression. Mol Psychiatry. 2018;23:824–32.CrossRefGoogle Scholar
  8. 8.
    DeLorenzo C, Milak MS, Brennan KG, Kumar JSD, Mann JJ, Parsey RV. In vivo positron emission tomography imaging with [11C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Eur J Nucl Med Mol Imaging. 2011;38:1083–94.CrossRefGoogle Scholar
  9. 9.
    DuBois JM, Rousset OG, Rowley J, Porras-Betancourt M, Reader AJ, Labbe A, et al. Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET. Eur J Nucl Med Mol Imaging. 2016;43:152–62.CrossRefGoogle Scholar
  10. 10.
    Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, et al. Imaging in vivo glutamate fluctuations with [11C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab. 2015;35:1169–74.CrossRefGoogle Scholar
  11. 11.
    Elmenhorst D, Mertens K, Kroll T, Oskamp A, Ermert J, Elmenhorst E-M, et al. Circadian variation of metabotropic glutamate receptor 5 availability in the rat brain. J Sleep Res. 2016;25:754–61.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kelly Smart
    • 1
    Email author
  • Sylvia M. L. Cox
    • 1
  • Alexey Kostikov
    • 2
    • 3
  • Aliaksandr Shalai
    • 1
  • Stephanie G. Scala
    • 1
  • Maria Tippler
    • 1
  • Natalia Jaworska
    • 4
    • 5
  • Michel Boivin
    • 6
  • Jean R. Séguin
    • 7
    • 8
  • Chawki Benkelfat
    • 1
    • 2
  • Marco Leyton
    • 1
    • 2
    • 7
    • 9
    • 10
  1. 1.Department of PsychiatryMcGill UniversityMontrealCanada
  2. 2.Department of Neurology & Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  3. 3.McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontrealCanada
  4. 4.Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
  5. 5.Institute of Mental Health Research, affiliated with the University of OttawaOttawaCanada
  6. 6.Department of PsychologyUniversité LavalLavalCanada
  7. 7.CHU Ste-Justine Research CenterMontrealCanada
  8. 8.Department of Psychiatry and AddictionUniversité de MontréalMontrealCanada
  9. 9.Department of PsychologyMcGill UniversityMontrealCanada
  10. 10.Center for Studies in Behavioral NeurobiologyConcordia UniversityMontrealCanada

Personalised recommendations