Advertisement

Dynamic whole-body PET imaging: principles, potentials and applications

  • Arman Rahmim
  • Martin A. Lodge
  • Nicolas A. Karakatsanis
  • Vladimir Y. Panin
  • Yun Zhou
  • Alan McMillan
  • Steve Cho
  • Habib Zaidi
  • Michael E. Casey
  • Richard L. Wahl
Review Article
  • 357 Downloads

Abstract

Purpose

In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with significant clinical potential, in relation to conventional standard uptake value (SUV) imaging.

Background

DWB PET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging times, and enables generation of multiple types of PET images with complementary information in a single imaging session. Importantly, DWB PET can be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred to sometimes as “distribution volume”), while also providing (iii) a conventional ‘SUV-equivalent’ image for certain protocols.

Results

We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant applications.

Conclusion

Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI (magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-derived measures, with limited pitfalls as we also discuss in this work.

Keywords

PET Dynamic Whole-body Parametric imaging Kinetic modeling Systemic disease 

Notes

Acknowledgements

This work was in part supported by Siemens Medical Solutions, and by the Swiss National Science Foundation under Grant SNSF 320030_176052. We wish to gratefully acknowledge valuable discussions and/or support from Corina Voicu, Ramya Rajaram, Darrell Burckhardt, Bernard Bendriem, Saeed Ashrafinia, Jeff Leal, Joo O, Fotis Kotasidis, Rathan Subramaniam, Lilja Solnes, Hyungseok Jang, Hyung-Jun Im, Mika Naganawa, Richard Carson, Harvey Ziessman, Albert Gjedde and Simon Cherry.

Funding

This study was in part funded by Siemens Medical Solutions, and by the Swiss National Science Foundation under Grant SNSF 320030_176052.

Compliance with ethical standards

Conflict of interest

Authors Arman Rahmim, Nicolas A. Karakatsanis, Habib Zaidi and Richard L. Wahl have received research support from Siemens Medical Solutions, and authors Alan McMillan and Steve Cho have received research support from GE Healthcare. Authors Martin A. Lodge and Yun Zhou declare that they have no conflict of interest. Vladimir Panin and Michael Casey are employees of Siemens Healthineers.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Wahl RL, Buchanan JW. Principles and practice of positron emission tomography. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.Google Scholar
  2. 2.
    Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. Anatometabolic tumor imaging — fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 1993;34:1190–7.PubMedGoogle Scholar
  5. 5.
    Wahl RL, Quint LE, Orringer M, Meyer CH. Staging non-small-cell lung cancer in the mediastinum — comparison of FDG-PET, CT and hybrid anatometabolic fusion images with pathology. Radiology. 1992;185:324.Google Scholar
  6. 6.
    Mawlawi O, Townsend DW. Multimodality imaging: an update on PET/CT technology. Eur J Nucl Med Mol Imaging. 2009;36:15–29.  https://doi.org/10.1007/S00259-008-1016-6.CrossRefGoogle Scholar
  7. 7.
    Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.  https://doi.org/10.2967/Jnumed.111.092726.CrossRefPubMedGoogle Scholar
  8. 8.
    Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ. Combined PET/MR imaging — technology and applications. Technol Cancer Res Treat. 2010;9:5–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMedGoogle Scholar
  10. 10.
    Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMedGoogle Scholar
  11. 11.
    Huang S-C. Anatomy of SUV. Nucl Med Biol. 2000;27:643–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med Mol Imaging. 1996;23:1409–15.CrossRefGoogle Scholar
  14. 14.
    Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med Mol Imaging. 1999;26:22–30.CrossRefGoogle Scholar
  15. 15.
    Freedman TNM, Sundaram KS, Kurdziel K, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:8.CrossRefGoogle Scholar
  16. 16.
    Zaidi H, Karakatsanis N. Towards enhanced PET quantification in clinical oncology. Br J Radiol. 2017;91:20170508.PubMedCrossRefGoogle Scholar
  17. 17.
    Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology. 1999;211:249–56.PubMedCrossRefGoogle Scholar
  18. 18.
    Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. J Nucl Med. 1996;37:371–4.PubMedGoogle Scholar
  19. 19.
    Chan WL, Ramsay SC, Szeto ER, Freund J, Pohlen JM, Tarlinton LC, et al. Dual-time-point (18)F-FDG-PET/CT imaging in the assessment of suspected malignancy. J Med Imag Radiat. 2011;55:379–90.  https://doi.org/10.1111/J.1754-9485.2011.02287.X.CrossRefGoogle Scholar
  20. 20.
    Freeman LM, Johnson PM. Clinical radionuclide imaging. 3rd Ed. Orlando FL, Grune & Stratton Inc.; 1984.Google Scholar
  21. 21.
    Weissman BN. Imaging of arthritis and metabolic bone disease. Philadelphia PA: Elsevier Health Sciences; 2009.CrossRefGoogle Scholar
  22. 22.
    Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography—basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897.PubMedCrossRefGoogle Scholar
  24. 24.
    Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using (82)rb PET imaging: the Ruby-10 Study. JACC Cardiovasc Imaging. 2014;7:1119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. Pet tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17:2400–9.  https://doi.org/10.1158/1078-0432.Ccr-10-2649.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of pet data in oncology: review of current methods and trends for the future. Mol Imaging Biol 2012;14(2):131–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for (18)F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med. 2006;47:23–31.PubMedGoogle Scholar
  28. 28.
    Allen-Auerbach M, Weber WA. Measuring response with FDG PET: methodological aspects. Oncologist. 2009;14:369–77.  https://doi.org/10.1634/Theoncologist.2008-0119.CrossRefPubMedGoogle Scholar
  29. 29.
    Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, Joensuu H. Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med. 1992;33:691–5.PubMedGoogle Scholar
  30. 30.
    Liu P, Huang G, Dong S, Wan L. Kinetic analysis of experimental rabbit tumour and inflammation model with 18f-FDG PET/CT. Nuklearmedizin. 2009;48:153–8.PubMedGoogle Scholar
  31. 31.
    Sundaram SK, Freedman NM, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al. Simplified kinetic analysis of tumor 18f-FDG uptake: a dynamic approach. J Nucl Med. 2004;45:1328–33.PubMedGoogle Scholar
  32. 32.
    Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Euro J Nucl Med Mol Imaging. 2007;34:868–77.CrossRefGoogle Scholar
  33. 33.
    Song SL, Deng C, Wen LF, Liu JJ, Wang H, Feng D, et al. 18f-FDG PET/CT-related metabolic parameters and their value in early prediction of chemotherapy response in a VX2 tumor model. Nucl Med Biol. 2010;37:327–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG. Quantitative, dynamic 18f-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hellj Nucl Med. 2009;12:223–8.Google Scholar
  35. 35.
    Krak NC, Van Der Hoeven JJ, Hoekstra OS, Twisk JW, Van Der Wall E, Lammertsma AA. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Euro J Nucl Med Mol Imaging. 2003;30:674–81.CrossRefGoogle Scholar
  36. 36.
    Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.PubMedCrossRefGoogle Scholar
  37. 37.
    Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Euro J Nucl Med Mol Imaging. 2003;30:46–53.CrossRefGoogle Scholar
  38. 38.
    Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43:510–8.PubMedGoogle Scholar
  39. 39.
    Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [F-18]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer. 1999;35:1773–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Weber WA, Ziegler SI, Thodtmann R, Hanauske A-R, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771–7.PubMedGoogle Scholar
  41. 41.
    Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, et al. Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med. 1992;33:1191–1199.Google Scholar
  42. 42.
    Hustinx R, Bènard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Sem Nucl Med. 2002;32:35–46.CrossRefGoogle Scholar
  43. 43.
    Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med Mol Imaging. 2001;28:696–703.CrossRefGoogle Scholar
  44. 44.
    Townsend DW. Positron emission tomography/computed tomography. Sem Nucl Med. 2008;38:152–66.CrossRefGoogle Scholar
  45. 45.
    Boellaard R, O'doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.  https://doi.org/10.1007/S00259-009-1297-4. PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.  https://doi.org/10.2967/Jnumed.107.044834.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56:98–105.  https://doi.org/10.2967/Jnumed.114.145029.CrossRefPubMedGoogle Scholar
  48. 48.
    Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med. 2009;50:1315–23.  https://doi.org/10.2967/Jnumed.109.063016.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2012.Google Scholar
  50. 50.
    Chandra R, Rahmim A. Nuclear medicine physics: the basics. 8th ed. Philadelphia, PA: Wolters Kluwer; 2017.Google Scholar
  51. 51.
    Armstrong IS, James JM, Williams HA, Kelly MD, Matthews JC. The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18f-FDG PET. Nucl Med Commun. 2015;36:728–37.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ. Effect of scan time on oncologic lesion detection in whole-body PET. IEEE Trans Nucl Sci. 2012;59:1940–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hutton BF. Recent advances in iterative reconstruction for clinical SPECT/PET and CT. Acta Oncol. 2011;50:851–8.  https://doi.org/10.3109/0284186x.2011.580001.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yang DC, Ratani RS, Mittal PK, Chua RS, Patel SM. Radionuclide three-phase whole-body bone imaging. Clin Nucl Med. 2002;27:419–26.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ho-Shon K, Feng D, Hawkins R, Meikle S, Fulham M, Li X. Optimized sampling and parameter estimation for quantification in whole body PET. IEEE Trans Biomed Eng. 1996;43:1021–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hoh CK, Levin CS, Vera DR. Whole body Patlak imaging. J Nucl Med. 2003;44:61.Google Scholar
  57. 57.
    Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al. Pet imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol-Endocrinol Metab. 2012;303:E1134–E41.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Karakatsanis N, Lodge MA, Zhou Y, Mhlange J, Chaudhry MA, Tahari AK, et al. Dynamic multi-bed FDG PET imaging: feasibility and optimization. IEEE Nucl Sci Symp Conf Theatr Rec. 2011:3863–70.Google Scholar
  59. 59.
    Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Bio. 2013;58:7391–418.CrossRefGoogle Scholar
  60. 60.
    Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PETparametric imaging: II. task-oriented statistical estimation. Phys Med Bio. 2013;58:7419–45.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Gener J Cereb Blood Flow Metab. 1985;5:584–90.CrossRefGoogle Scholar
  63. 63.
    Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem. 1981;36:1463–71.PubMedCrossRefGoogle Scholar
  64. 64.
    Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev. 1982;4:237–74.CrossRefGoogle Scholar
  65. 65.
    Rutland M. A single injection technique for subtraction of blood background in 131i-hippuran renograms. Br J Radiol. 1979;52:134–7.PubMedCrossRefGoogle Scholar
  66. 66.
    De Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al. Reproducibility of quantitative (18)F-3′-Deoxy-3'-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging. 2009;36:389–95.  https://doi.org/10.1007/S00259-008-0960-5.CrossRefPubMedGoogle Scholar
  67. 67.
    Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation Of 3 ' Deoxy-3 '-[F-18]fluorothymidine ([F-18]FLT) as a proliferation imaging tracer in humans: correlation of [F-18]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.PubMedGoogle Scholar
  68. 68.
    Pan MH, Huang SC, Liao YP, Schaue D, Wang CC, Stout DB, et al. FDG-PET imaging of radiation responses in murine tumors. Mol Imaging Biol. 2008;10:325–34.  https://doi.org/10.1007/S11307-008-0158-Z.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Contractor KB, Kenny LM, Stebbing J, Challapalli A, Al-Nahhas A, Palmieri C, et al. Biological basis of [(11)C]choline-positron emission tomography in patients with breast cancer: comparison with [(18)F]fluorothymidine positron emission tomography. Nucl Med Comm. 2011;32:997–1004.  https://doi.org/10.1097/Mnm.0b013e328349567b.CrossRefGoogle Scholar
  70. 70.
    Backes H, Ullrich R, Neumaier B, Kracht L, Wienhard K, Jacobs AH. Noninvasive quantification of (18)F-FLT human brain PET for the assessment of tumour proliferation in patients with high-grade glioma. Eur J Nucl Med Mol Imaging. 2009;36:1960–7.  https://doi.org/10.1007/S00259-009-1244-4.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med. 2004;45:1493–500.PubMedGoogle Scholar
  72. 72.
    Siddique M, Frost ML, Blake GM, Moore AE, Al-Beyatti Y, Marsden PK, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med. 2011;52:1748–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Lubberink M, Sandstrom M, Sörensen J, Granberg D, Garske-Román U, Lundqvist H, et al. Tracer kinetic analysis of 68ga-DOTATATE and 68ga-DOTATOC in neuroendocrine tumours. J Nucl Med. 2013;54:200.Google Scholar
  74. 74.
    Velikyan I, Sundin A, Sörensen J, Lubberink M, Sandström M, Garske-Román U, et al. Quantitative and qualitative intrapatient comparison of 68ga-DOTATOC and 68ga-68ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med. 2014;55:204–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Menda Y, Ponto LLB, Schultz MK, Zamba GK, Watkins GL, Bushnell DL, et al. Repeatability of 68ga-DOTATOC PET imaging in neuroendocrine tumors. Pancreas. 2013;42:937.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. Pet Clinics. 2007;2:267–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Carson RE. Tracer kinetic modeling in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. London: Springer; 2005. pp 127–59.Google Scholar
  78. 78.
    Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode pet data. IEEE T Med Imaging. 2014;33:913–24.CrossRefGoogle Scholar
  79. 79.
    Gjedde A. Positron emission tomography of brain glucose metabolism with [18F] fluorodeoxyglucose in humans. In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. London: Springer; 2014. pp 341–64.Google Scholar
  80. 80.
    Karakatsanis N, Lodge M, Zhou Y, Casey M, Wahl R, Subramaniam R, et al. Novel multi-parametric SUV/Patlak FDG-PET whole-body imaging framework for routine application to clinical oncology. J Nucl Med. 2015;56:625.Google Scholar
  81. 81.
    Zhou Y, Lodge M, Crandall J, Karakatsanis N, Casey M, Ashrafinia S, et al. Evaluation of whole-body parametric PET/CT image generation from high resolution high sensitivity mCT scanner. J Nucl Med. 2015;56:372.Google Scholar
  82. 82.
    Karakatsanis NA, Casey ME, Knesaurek K, Fayad ZA, Kostakoglu L. SUV/Patlak-4D whole-body PET/CT dynamic and parametric imaging: clinical demonstration and validation of SUV synthesis from dynamic passes. IEEE NSS/MIC. Atlanta, Ga: IEEE; 2017.Google Scholar
  83. 83.
    Osborne DR, Acuff S. Whole-body dynamic imaging with continuous bed motion PET/CT. Nucl Med Commun. 2016;37:428.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11:94–107.PubMedCrossRefGoogle Scholar
  85. 85.
    Den Hoff J, Hofheinz F, Oehme L, Schramm G, Langner J, Beuthien-Baumann B, et al. Dual time point based quantification of metabolic uptake rates in 18F-FDG PET. EJNMMI Res. 2013;3:16.  https://doi.org/10.1186/2191-219x-3-16.CrossRefGoogle Scholar
  86. 86.
    Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med Mol Imaging. 1999;26:1345–8.CrossRefGoogle Scholar
  87. 87.
    Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A. Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl Imagen Mol. 2009;28:159–66.CrossRefGoogle Scholar
  88. 88.
    Gambhir SS, Schwaiger M, Huang S-C, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med. 1989;30:359–66.PubMedGoogle Scholar
  89. 89.
    Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab. 1998;18:716–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time–activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–22.PubMedGoogle Scholar
  91. 91.
    Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.PubMedCrossRefGoogle Scholar
  92. 92.
    Lodge M, Bengel F. Methodology for quantifying absolute myocardial perfusion with PET and SPECT. Curr Cardiol Rep. 2007;9:121–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:71–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al. Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies. J Cereb Blood Flow Metab. 2009;29:1825–35.PubMedCrossRefGoogle Scholar
  95. 95.
    De Geus-Oei L-F, Visser EP, Krabbe PF, Van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring [18F]-FDG PET studies. J Nucl Med. 2006;47:945–9.PubMedGoogle Scholar
  96. 96.
    Feng D, Huang S-C, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32:95–110.PubMedCrossRefGoogle Scholar
  97. 97.
    Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology. 1993;188:131–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med. 1997;24:299–304.PubMedGoogle Scholar
  99. 99.
    Vriens D, De Geus-Oei L-F, Oyen WJ, Visser EP. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment. J Nucl Med. 2009;50:1933–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Karakatsanis N, Zhou Y, Lodge M, Casey M, Wahl R, Subramaniam R, et al. Clinical whole-body PET Patlak imaging 60–90min post-injection employing a population-based input function. J Nucl Med. 2015;56:1786.CrossRefGoogle Scholar
  101. 101.
    Lodge MA. Repeatability of SUV in oncologic 18F-FDG PET. J Nucl Med. 2017;58:523–32.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Karakatsanis NA, Lodge MA, Casey ME, Zaidi H, Rahmim A. Impact of acquisition time-window on clinical whole-body PET parametric imaging. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE: IEEE; 2014. pp 1–8.Google Scholar
  103. 103.
    Kaneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, et al. Initial evaluation of dynamic human imaging using 18 F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007;21:101–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation–maximization reconstruction. Phys Med Biol. 2016;61:5456.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. 2015;60:8643.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang Q, Wang R-F, Zhang J, Zhou Y. Differential diagnosis of pulmonary lesions by parametric imaging in 18F-FDG PET/CT dynamic multi-bed scanning. J Buon. 2013;18:928–34.PubMedGoogle Scholar
  107. 107.
    Panin V, Bal H, Defrise M, Casey M, Karakatsanis N, Rahmim A. Whole body parametric imaging on clinical scanner: direct 4D reconstruction with simultaneous attenuation estimation and time-dependent normalization. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE; 2015. 7pp.Google Scholar
  108. 108.
    Karakatsanis NA, Garibotto V, Rager O, Zaidi H. Continuous bed motion vs. step-and-shoot acquisition on clinical whole-body dynamic and parametric PET imaging. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE. 6pp.Google Scholar
  109. 109.
    Kotasidis FA, Garibotto V, Zaidi H. Hybrid whole-body dynamic TOF PET imaging for simultaneous estimation of compartmental and Patlak parametric maps from continuous bed motion data. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2016. 2pp.Google Scholar
  110. 110.
    Kotasidis FA, Manari M, Garibotto V, Zaidi H. Joint optimization of kinetic modelling and CBM acquisition parameters in hybrid whole-body dynamic PET imaging. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2017. 2ppGoogle Scholar
  111. 111.
    Jang H, Im HJ, Rahmim A, Cho S, Mcmillan A. On the feasibility of quantitative dynamic whole body PET/MR imaging. Proc Intl Soc Mag Reson Med. 2016;24:3715.Google Scholar
  112. 112.
    Lodge M, Rahmim A, Antoniou A, Solnes L, Wahl R. Dynamic whole-body 68ga-DOTATOC PET/CT. J Nucl Med. 2015;56(Suppl. 3):648.Google Scholar
  113. 113.
    Johansson E, Lubberink M, Heurling K, Eriksson JW, Skrtic S, Ahlström H, et al. Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: a feasibility study. Radiology. 2017;286:271–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Naganawa M, Gallezot JD, Shah V, Smith AM, Carson RE. The influence of sampling schedule for image-derived input function and Patlak plot estimation in whole body PET studies. IEEE Nucl Sci Symp Conf Theatr Rec 2017.Google Scholar
  115. 115.
    Zhou Y, Huang SC, Bergsneider M, Wong DF. Improved parametric image generation using spatial–temporal analysis of dynamic PET studies. NeuroImage. 2002;15:697–707.  https://doi.org/10.1006/Nimg.2001.1021.CrossRefPubMedGoogle Scholar
  116. 116.
    Zhou Y, Endres CJ, Brasic JR, Huang SC, Wong DF. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. NeuroImage. 2003;18:975–89.  https://doi.org/10.1016/S1053-8119(03)00017-X.CrossRefPubMedGoogle Scholar
  117. 117.
    Huang X, Zhou Y, Bao S, Huang SC. Clustering-based linear least square fitting method for generation of parametric images in dynamic FDG PET studies. Int J Biomed Imaging. 2007;2007:65641.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Mohy-Ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol. 2015;60:6013.PubMedCrossRefGoogle Scholar
  119. 119.
    Bal H, Panin V, Karakatsanis N, Lodge M, Rahmim A, Casey M. Novel quantitative whole-body parametric pet imaging utilizing multiple clustering realizations. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016: IEEE; 2016. 5pp.Google Scholar
  120. 120.
    Van Slambrouck K, Stute S, Comtat C, Sibomana M, Van Velden F, Boellaard R. Et Al. Bias reduction for low-statistics PET: maximum likelihood reconstruction with a modified Poisson distribution. IEEE T Med Imaging. 2015;34:126–36.CrossRefGoogle Scholar
  121. 121.
    Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm. I Theory Phys Med Biol. 1994;39:833–46.PubMedCrossRefGoogle Scholar
  122. 122.
    Qi J. A unified noise analysis for iterative image estimation. Phys Med Biol. 2003;48:3505–19.PubMedCrossRefGoogle Scholar
  123. 123.
    Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys. 2008;35:3963–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys. 2009;36:3654–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013; 3(10):802-815.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Huang SC, Carson RE, Phelps ME. Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab. 1982;2:99–108.PubMedCrossRefGoogle Scholar
  127. 127.
    Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4:28–34.PubMedCrossRefGoogle Scholar
  128. 128.
    Maguire RP, Calonder C, Leenders KL. An investigation of multiple time/graphical analysis applied to projection data: theory and validation. J Comput Assist Tomogr. 1997;21:327–31.PubMedCrossRefGoogle Scholar
  129. 129.
    Carson RE, Lange K. The EM parametric image reconstruction algorithm. J Am Statist Assoc. 1985;80:20–2.Google Scholar
  130. 130.
    Matthews J, Bailey D, Price P, Cunningham V. The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Phys Med Biol. 1997;42:1155.PubMedCrossRefGoogle Scholar
  131. 131.
    Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging. 2005;24:636–50.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang G, Fu L, Qi J. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET. Phys Med Biol. 2008;53:593–604.Google Scholar
  133. 133.
    Tsoumpas C, Turkheimer FE, Thielemans K. Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography. Med Phys. 2008;35:1299–309.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Tang J, Kuwabara H, Wong DF, Rahmim A. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy. Phys Med Bio. 2010;55:1–12.CrossRefGoogle Scholar
  135. 135.
    Wang G, Qi J. Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys Med Biol. 2010;55:1505–17.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Barrett HH, Myers KJ. Foundations of image science. Hoboken, New Jersey: Wiley & Sons, Inc.; 2004.Google Scholar
  137. 137.
    Anzai Y, Minoshima S, Wolf GT, Wahl RL. Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology. 1999;212:285–90.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Pedersen F, Bergströme M, Bengtsson E, Långström B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994;21:1285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Thireou T, Strauss LG, Dimitrakopoulou-Strauss A, Kontaxakis G, Pavlopoulos S, Santos A. Performance evaluation of principal component analysis in dynamic FDG-PET studies of recurrent colorectal cancer. Comput Med Imaging Graph. 2003;27:43–51.PubMedCrossRefGoogle Scholar
  140. 140.
    Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström MA. New application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies—clinical brain studies using [11c]-Gr205171,[11c]-L-deuterium-deprenyl,[11c]-5-hydroxy-L-tryptophan,[11c]-L-dopa and Pittsburgh compound-B. NeuroImage. 2006;33:588–98.PubMedCrossRefGoogle Scholar
  141. 141.
    Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim S-K, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42:938–43.PubMedGoogle Scholar
  142. 142.
    Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time–activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005;52:201–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Ahn JY, Lee DS, Lee JS, Kim S-K, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis. J Nucl Med. 2001;42:782–7.PubMedGoogle Scholar
  144. 144.
    El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med. 2005;46:1264–71.PubMedGoogle Scholar
  145. 145.
    Su Y, Welch MJ, Shoghi KI. The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data. Phys Med Biol. 2007;52:2313.PubMedCrossRefGoogle Scholar
  146. 146.
    El Fakhri G, Trott CM, Sitek A, Bonab A, Alpert NM. Dual-tracer PET using generalized factor analysis of dynamic sequences. Mol Imaging Biol. 2013;15:666–74.PubMedCrossRefGoogle Scholar
  147. 147.
    Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analysis of dynamic PET studies: a review of 20 years of method developments and applications. Comput Math Methods Med. 2016;2016:7187541CrossRefGoogle Scholar
  148. 148.
    Cunningham VJ, Ashburner J, Byrne H, Jones T (1993) Use of spectral analysis to obtain parametric images from dynamic PET studies. In: Uemura K, Lassen NA, Jones T, Kanno I (eds) Quantification of brain function. Tracer kinetics and image analysis in brain PET. Amsterdam, Elsevier Science, pp 101–108Google Scholar
  149. 149.
    Wong K-P, Feng D, Meikle SR, Fulham MJ. Segmentation of dynamic PET images using cluster analysis. IEEE Trans Nucl Sci. 2002;49:200–7.CrossRefGoogle Scholar
  150. 150.
    Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Parametric imaging: a promising approach for the evaluation of dynamic PET-18F-FDG studies — the DKFZ experience. Hellj Nucl Med. 2010;13:18–22.Google Scholar
  151. 151.
    Slobbe P, Poot AJ, Windhorst AD, Van Dongen GA. PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov Today. 2012;17:1175–87.PubMedCrossRefGoogle Scholar
  152. 152.
    Foster JA, Neufeld KAM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013;36:305–312.PubMedCrossRefGoogle Scholar
  153. 153.
    Chandra R, Hiniker A, Kuo Y-M, Nussbaum Rl, Liddle RA. Α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2017;2(12):pii: 92295.Google Scholar
  154. 154.
    Mulak A, Bonaz B. Brain–gut–microbiota axis in Parkinson's disease. World J Gastroenterol. 2015;21:10609–20.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Tahsili-Fahadan P, Geocadin RG. Heart–brain axis: effects of neurologic injury on cardiovascular function. Circ Res. 2017;120:559–72.PubMedCrossRefGoogle Scholar
  156. 156.
    Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263–75.PubMedCrossRefGoogle Scholar
  157. 157.
    Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389:834–845.CrossRefGoogle Scholar
  158. 158.
    Seemann MD. Whole-body PET/MRI: the future in oncological imaging. Technol Cancer Res Treat. 2005;4:577–82.PubMedCrossRefGoogle Scholar
  159. 159.
    Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Yankeelov TE, Peterson TE, Abramson RG, Garcia-Izquierdo D, Arlinghaus LR, Li X, et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342–56.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Zaidi H, Becker M. The promise of hybrid PET/MRI: technical advances and clinical applications. IEEE Signal Process Mag. 2016;33:67–85.CrossRefGoogle Scholar
  162. 162.
    Moser E, Stadlbauer A, Windischberger C, Quick HH, Ladd ME. Magnetic resonance imaging methodology. Eur J Nucl Med Mol Imaging. 2009;36:30–41.  https://doi.org/10.1007/S00259-008-0938-3.CrossRefGoogle Scholar
  163. 163.
    Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004;45:797–801.PubMedGoogle Scholar
  164. 164.
    Kotasidis FA, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Trans Imag. 2014;2:219–37.CrossRefGoogle Scholar
  165. 165.
    Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015; 45(3):212–23.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51:51s–65s.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55:2527–2535.PubMedCrossRefGoogle Scholar
  168. 168.
    Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.PubMedCrossRefGoogle Scholar
  169. 169.
    Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Oo J, Karakatsanis N, Rahmim A, Lodge M, Wahl R. A novel imaging method for assessing vessel wall inflammation: dynamic multi-bed PET parametric imaging. J Nucl Med. 2013;54:1670.Google Scholar
  171. 171.
    Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64:208–15.  https://doi.org/10.1212/01.Wnl.0000149403.14458.7f.CrossRefPubMedGoogle Scholar
  172. 172.
    Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Verhaeghe J, Gravel P, Mio R, Fukasawa R, Rosa-Neto P, Soucy JP, et al. Motion compensation for fully 4D pet reconstruction using PET superset data. Phys Med Biol. 2010;55:4063–82.  https://doi.org/10.1088/0031-9155/55/14/008 CrossRefPubMedGoogle Scholar
  174. 174.
    Nakamoto Y, Sakamoto S, Okada T, Matsumoto K, Minota E, Kawashima H, et al. Accuracy of image fusion using a fixation device for whole-body cancer imaging. AJR Am J Roentgenol. 2005;184:1960–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med. 2001;42:795–801.PubMedGoogle Scholar
  176. 176.
    Scussolini M, Garbarino S, Sambuceti G, Caviglia G, Piana M. A Physiology-based parametric imaging method for FDG-PET data. Inverse Problems. 2017;33:125010.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arman Rahmim
    • 1
    • 2
  • Martin A. Lodge
    • 1
  • Nicolas A. Karakatsanis
    • 3
  • Vladimir Y. Panin
    • 4
  • Yun Zhou
    • 1
  • Alan McMillan
    • 5
  • Steve Cho
    • 5
  • Habib Zaidi
    • 6
  • Michael E. Casey
    • 4
  • Richard L. Wahl
    • 7
  1. 1.Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreUSA
  2. 2.Departments of Radiology and Physics & AstronomyUniversity of British ColumbiaVancouverCanada
  3. 3.Department of RadiologyWeill Cornell Medical CollegeNew YorkUSA
  4. 4.Siemens HealthineersKnoxvilleUSA
  5. 5.Department of RadiologyUniversity of WisconsinMadisonUSA
  6. 6.Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
  7. 7.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations