Advertisement

The SNMMI and EANM practice guideline for renal scintigraphy in adults

  • M. Donald Blaufox
  • Diego De Palma
  • Andrew Taylor
  • Zsolt Szabo
  • Alain Prigent
  • Martin Samal
  • Yi Li
  • Andrea Santos
  • Giorgio Testanera
  • Mark Tulchinsky
Guidelines
  • 445 Downloads

Abstract

Purpose

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.

Methods

The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary, or sooner, if indicated.

Conclusion

Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by entities not providing these services is not authorized.

Keywords

Renal dynamic scan Renal static scan Adults EANM SNMMI Guideline 

Notes

Acknowledgments

The authors acknowledge the EANM board, the EANM national delegates, the of the EANM Committees, and members of the SNMMI Committee on Guidelines for their contributions to this manuscript.

The SNMMI Procedure Standards Committee consists of the following individuals:

Dominique Delbeke, MD, PhD, FSNMMI (Chair; Vanderbilt University Medical Center, Nashville, TN); Kevin J. Donohoe, MD (Beth Israel Deaconess Medical Center, Boston, MA); Helena Balon, MD (Beaumont Health System, Royal Oak, MI); Twyla Bartel, DO, MBA, FACNM (Global Advanced Imaging, PLLC, Little Rock, AR); Vasken Dilsizian, MD (University of Maryland Medical Center, Baltimore, MD); James R. Galt, PhD (Emory University Hospital, Atlanta, GA); Jay A. Harolds, MD (Advanced Radiology Services, PC, Grand Rapids, MI); J. Anthony Parker, MD, PhD (Beth Israel Deaconess Medical Center, Boston, MA); Lynne T. Roy, MBA, CNMT, FSNMMI-TS (Cedars/Sinai Medical Center, Los Angeles, CA); Heiko Schoder, MD (Memorial Sloan-Kettering Cancer Center, New York, NY); Barry L. Shulkin, MD, MBA (St. Jude Children’s Research Hospital, Memphis, TN); Michael G. Stabin, PhD (Vanderbilt University, Nashville, TN); Mark Tulchinsky, MD, FACNM, CCD (Milton S. Hershey Medical Center, Hershey, PA); Bennett Greenspan, MD, FACNM, FACR (Medical College of Georgia, Augusta, GA); Darko Pucar, MD, PhD (Yale New Haven Hospital, New Haven, CT); David Brandon, MD (Emory University, Atlanta, GA); Erica Cohen, DO, MPH, CCD, FACNM (Edward Hines VA, Hines, IL); Laurel Campbell, BS, CNMT, RT(N)(CT) (Brigham and Women’s Hospital, Boston, MA); Perry Gerard, MD (Woodmere, NY); Pradeep Bhambhvani, MD (The University of Alabama at Birmingham, Birmingham, AL); Aaron Jessop, MD, MBA (Vanderbilt University Medical Center, Nashville, TN); Alan Packard, PhD (Boston Children’s Hospital/Harvard Medical School, Boston, MA); Amir Khandani, MD (University of North Carolina, Chapel Hill, NC).

The EANM Board consists of the following individuals:

Jolanta Kunikowska, MD, PhD (Nuclear Medicine Department, Medical University of Warsaw, Poland); Francesco Giammarile, MD, PhD (Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria); Willem J.G. Oyen, MD, PhD (The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Department of Nuclear Medicine, London, UK); Jan Pruim, MD, PhD (Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands); Roberto Delgado Bolton, MD, PhD (University Hospital San Pedro, Logroño, La Rioja, Spain); Kristoff Muylle, MD (UniversitairZiekenhuisBrussel-VUB, Brussels, Belgium).

Compliance with ethical standards

Approval

These procedures were approved by the SNMMI and EANM Boards.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Sfakianakis GN, Sfakianakis ED. Nuclear medicine in pediatric urology. J Nucl Med. 1988;29:1287–300.PubMedGoogle Scholar
  2. 2.
    Boubaker A, Prior JO, Meuwly JY, Bischof-Delaloye A. Radionuclide investigations of the urinary tract in the era of multimodality imaging. J Nucl Med. 2006;47:1819–36.Google Scholar
  3. 3.
    De Palma D, Santos AI. Renal radionuclide imaging: an evergreen forty years old. Klin Padiatr. 2014;226:225–32.CrossRefGoogle Scholar
  4. 4.
    Blaufox MD. Procedures of choice in renal nuclear medicine. J Nucl Med. 1991;32:1301–9.PubMedGoogle Scholar
  5. 5.
    Rado JP, Bano C, Tako J. Radioisotope renography during furosemide (Lasix) diuresis. Nucl Med Commun. 1968;7:212–21.Google Scholar
  6. 6.
    O’Reilly PH, Testa HJ, Lawson RS, et al. Diuresis renography in equivocal urinary tract obstruction. Br J Urol. 1978;50:76–80.CrossRefGoogle Scholar
  7. 7.
    O’Reilly PH. Diuresis renography: recent advances and recommended protocols. Br J Urol. 1992;69:113–20.CrossRefGoogle Scholar
  8. 8.
    O’Reilly P, Britton K, et al. Consensus report on diuresis renography for investigating the dilated upper urinary tract. J Nucl Med. 1996;37:1872–6.PubMedGoogle Scholar
  9. 9.
    Taylor AT, Blaufox MD, De Palma D, et al. A guidance document for structured reporting of diuresis renography. Semin Nucl Med. 2012;42:41–8.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Taylor A, Nally J, Aurell M, et al. Consensus report on ACE inhibitor renography for detecting renovascular hypertension. Radionuclides in Nephrourology Group. Consensus group on ACEI renography. J Nucl Med. 1996;37(11):1876–82.PubMedGoogle Scholar
  11. 11.
    Taylor A. ACE inhibition renography in the evaluation of suspected renovascular hypertension. In: Prigent A, Piepsz A, editors. Functional imaging in nephrourology. London: Taylor and Francis; 2006. p. 149–64.CrossRefGoogle Scholar
  12. 12.
    Prigent A, Chaumet-Riffaud P. Clinical problems in renovascular disease and the role of nuclear medicine. Semin Nucl Med. 2014;44:110–22.CrossRefGoogle Scholar
  13. 13.
    Hilson AJ, Maisey MN, Brown CB, et al. Dynamic renal transplant imaging with Tc-99m DTPA (Sn) supplemented by a transplant perfusion index in the management of renal transplants. J Nucl Med. 1978;19(9):994–1000.PubMedGoogle Scholar
  14. 14.
    Kirchner PT, Goldman MH, Leapman SB, Kiepfer RF. Clinical application of the kidney to aortic blood flow index (K/A ratio). Contrib Nephrol. 1978;11:120–6.CrossRefGoogle Scholar
  15. 15.
    Li Y, Russell CD, Palmer-Lawrence J, Dubovsky EV. Quantitation of renal parenchymal retention of technetium-99m-MAG3 in renal transplants. J Nucl Med. 1994;35(5):846–50.PubMedGoogle Scholar
  16. 16.
    Dubovsky EV, Russell CD, Bischof-Delaloye A, et al. Report of the radionuclides in Nephrourology committee for evaluation of transplanted kidney (review of techniques). Semin Nucl Med. 1999;29(2):175–88.CrossRefGoogle Scholar
  17. 17.
    De Palma D, Manzoni GA. Different imaging strategies in febrile urinary tract infection in childhood. What, when, why? Pediatr Radiol. 2013;43(4):436–43.CrossRefGoogle Scholar
  18. 18.
    Tubis M, Posnick E, Nordyke RA. Preparation and use of I-131 labeled sodium iodohippurate in kidney function test. Proc Soc Exp Biol Med. 1960;103:497–8.CrossRefGoogle Scholar
  19. 19.
    Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of Tc-99m MAG3 as a hippuran replacement. J Nucl Med. 1986;27:111–6.PubMedGoogle Scholar
  20. 20.
    Russell CD, Dubovsky EV. Reproducibility of single-sample clearance of 99mTc-mercaptoacetyltriglycine and 131I-Orthoiodohippurate. J Nucl Med. 1999;40:1122–4.PubMedGoogle Scholar
  21. 21.
    Müller-Suur R, Müller-Suur C. Glomerular filtration and tubular secretion of MAG-3 in the rat kidney. J Nucl Med. 1989;30(12):1986–91.PubMedGoogle Scholar
  22. 22.
    Bubeck B, Brandau W, Eisenhurt M, et al. The tubular extraction rate (TER) of Tc-99m MAG3: a new quantitative parameter for renal parameter of renal function. Nucl Compact. 1987;18:260–7.Google Scholar
  23. 23.
    Hauser W, Atkins HL, Nelson KG, Richards P. Technetium-99m DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology. 1970;94(Issue 3).CrossRefGoogle Scholar
  24. 24.
    Chantler C, Barratt TM. Estimation of glomerular filtration rate from plasma clearance of 51Cr-edetic acid. Arch Dis Child. 1972;47:613–7.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Stacy BD, Thorburn GD. Chromium-51 ethylenediaminetetraacetate for estimation of glomerular filtration rate. Science. 1966;152(3725):1076–7.CrossRefGoogle Scholar
  26. 26.
    Boyd RE, Robson J, Hunt FC, et al. 99mTc gluconate complexes for renal scintigraphy. Br J Radiol. 1973;46(548):604–12.CrossRefGoogle Scholar
  27. 27.
    Lin TH, Khentigan A, Winchell HS. A 99mTc-chelate substitute for organoradiomercurial renal agents. J Nucl Med. 1974;15(1):34–5.PubMedGoogle Scholar
  28. 28.
    Willis KW, Martinez DA, Hedley-Whyte ET, et al. Renal localization of 99mTc-stannous glucoheptonate and 99mTc-stannous dimercaptosuccinate in the rat by frozen section autoradiography. The efficiency and resolution of technetium-99m. Radiat Res. 1977;69(3):475–88.CrossRefGoogle Scholar
  29. 29.
    Yee CA, Lee HB, Blaufox MD. DMSA renal uptake: influence of biochemical and physiologic factors. J Nucl Med. 1981;22(12):1054–8.PubMedGoogle Scholar
  30. 30.
    ICRP publication 80. Absorbed doses. Radiation dose to patients from radiopharmaceuticals. Addendum 2 to ICRP publication. Oxford: Pergamon Press; 1998.Google Scholar
  31. 31.
    Stabin M, Taylor A, Eshima D, et al. Radiation dosimetry for technetium-99m-DTPA, and iodine-131-OIH based on human biodistribution studies. J Nucl Med. 1992;33:33–40.PubMedGoogle Scholar
  32. 32.
    Fommei E, Ghione S, Hilson AJW, et al. Captopril radionuclide test in renovascular hypertension: a European multicentre study. Eur J Nucl Med. 1993;20:617–23.CrossRefGoogle Scholar
  33. 33.
    Taylor AT Jr, Fletcher JW, Nally JV Jr, et al. Procedure guideline for diagnosis of renovascular hypertension. Society of Nuclear Medicine. J Nucl Med. 1998;39(7):1297–302.PubMedGoogle Scholar
  34. 34.
    Piepsz A, Colarinha P, Gordon I, et al. Guidelines for 99mTc-DMSA scintigraphy in children. Eur J Nucl Med. 2001;28(3):BP37–41. Revision 2010 on linePubMedGoogle Scholar
  35. 35.
    Piepsz A, Dobbeleir A, Ham HR. Effect of background correction on separate technetium-99m-DTPA renal clearance. J Nucl Med. 1990;31:430–5.PubMedGoogle Scholar
  36. 36.
    Lythgoe MF, Gordon I, Khader Z, et al. Assessment of various parameters in the estimation of differential renal function using technetium-99m mercaptoaccetyltriglycine. Eur J Nucl Med. 1999;26:155–62.CrossRefGoogle Scholar
  37. 37.
    Lezaic L, Hodolic M, Fettich J, et al. Reproducibility of 99mTc-mercaptoacetyltriglycine renography: population comparison. Nucl Med Commun. 2008;29:695–704.CrossRefGoogle Scholar
  38. 38.
    Caglar M, Gedik GK, Karabulut E. Differential renal function estimation by dynamic renal scintigraphy: influence of background definition and radiopharmaceutical. Nucl Med Commun. 2008;29:1002–5.CrossRefGoogle Scholar
  39. 39.
    Rutland MD. Glomerular filtration rate using 99mTc DTPA and a gamma camera. Eur J Nucl Med. 1983;4:425–33.Google Scholar
  40. 40.
    Gordon I, Piepsz A, Sixt R. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging. 2011;38(6):1175–88.CrossRefGoogle Scholar
  41. 41.
    Blaufox MD. Editorial comments: renal background correction and measurement of split renal function: the challenge. Eur J Nucl Med Mol Imaging. 2016;43:548–9.CrossRefGoogle Scholar
  42. 42.
    Fine EJ, Blaufox MD, On Behalf of the Albert Einstein College of Medicine/Cornell University Medical Center Collaborative Hypertension Group. The Einstein/Cornell collaborative protocol to assess efficacy and methodology in captopril scintirenography. Am J Hypertens. 1991;4:716S–20S.CrossRefGoogle Scholar
  43. 43.
    Prigent A, Cosgriff P, Gates GF, et al. Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: international consensus committee from the scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med. 1999;29(2):146–59.CrossRefGoogle Scholar
  44. 44.
    Delpassand ES, Homayoon K, Madden T, et al. Determination of glomerular filtration rate using a dual-detector gamma camera and the geometric mean of renal activity: correlation with the Tc-99m DTPA plasma clearance method. Clin Nucl Med. 2000;25(4):258–62.CrossRefGoogle Scholar
  45. 45.
    Blaufox MD, Aurell M, Bubeck B, et al. Report of the radionuclides in nephrourology committee on renal clearance. J Nucl Med. 1996;37(11):1883–90.PubMedGoogle Scholar
  46. 46.
    Gates GF. Glomerular filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (stannous). AJR Am J Roentgenol. 1982;138(3):565–70.CrossRefGoogle Scholar
  47. 47.
    Schlegel JU, Hamway SA. Individual renal plasma flow determination in 2 minutes. J Urol. 1976;116(3):282–5.CrossRefGoogle Scholar
  48. 48.
    Tauxe WN, Dubovsky EV, Kidd T Jr, et al. New formulas for the calculation of effective renal plasma flow. Eur J Nucl Med. 1982;7(2):51–4.CrossRefGoogle Scholar
  49. 49.
    Taylor A Jr, Corrigan PL, Galt J, et al. Measuring technetium-99m-MAG3 clearance with an improved camera-based method. J Nucl Med. 1995;36:1689–95.PubMedGoogle Scholar
  50. 50.
    Piepsz A, Colarinha P, Gordon I, et al. Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med. 2001;28(3):BP31–6.PubMedGoogle Scholar
  51. 51.
    Itoh K. Comparison of methods for determination of glomerular filtration rate: Tc-99m-DTPA renography, predicted creatinine clearance method and plasma sample method. Ann Nucl Med. 2003;17(7):561–5.CrossRefGoogle Scholar
  52. 52.
    Cosgriff PS, Lawson RS, Nimmon CC. Towards standardization in gamma camera renography. Nucl Med Commun. 1992;13:580–5.CrossRefGoogle Scholar
  53. 53.
    Fleming JS. A technique for analysis of geometric mean renography. Nucl Med Commun. 2006;27:701–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear MedicineAlbert Einstein College of Medicine, and Montefiore Medical CenterNew YorkUSA
  2. 2.Nuclear Medicine ServiceASST-SettelaghiVareseItaly
  3. 3.Radiology and Imaging SciencesEmory University School of MedicineAtlantaUSA
  4. 4.The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins Medical InstitutionsBaltimoreUSA
  5. 5.Biophysics and Nuclear Medicine Department, Bicêtre HospitalUniversity of Paris-SudParisFrance
  6. 6.Department of Nuclear Medicine, First Faculty of MedicineCharles University PraguePragueCzech Republic
  7. 7.Division of Nuclear Medicine, Department of RadiologyPhiladelphia VA Medical CenterPhiladelphiaUSA
  8. 8.Hospital Cuf DescobertasLisbonPortugal
  9. 9.Barts Health NHS Trust, Department of Nuclear MedicineSt Bartholomew’s HospitalLondonUK
  10. 10.MS Hershey Medical CenterPenn State UniversityHersheyUSA

Personalised recommendations