Skip to main content
Log in

Prognostic significance of normalized FDG-PET parameters in patients with multiple myeloma undergoing induction chemotherapy and autologous hematopoietic stem cell transplantation: a retrospective single-center evaluation

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine retrospectively, through a single-center evaluation, whether FDG PET-CT normalized semi-quantitative parameters may predict response to induction chemotherapy (iChT) and hematopoietic stem cell transplantation (HSCT), as well as disease progression and progression-free survival in multiple myeloma (MM) patients, thus becoming a tool of personalized medicine.

Methods

Patients undergoing iChT and HSCT with baseline and post-treatment FDG PET-CTs from January 2008 to July 2015 were included. The following baseline and post-treatment parameters were obtained: SUVmax, SUVmean, SUVpeak, MTVsum, TLGsum, rPET (lesion SUVmax/liver SUVmax) and qPET (lesion SUVpeak/liver SUVmean). Baseline-to-post-treatment changes (Δ) were also calculated. Metabolic and clinical laboratory progression or response at follow-up were noted; time-to-metabolic-progression (TMP) was defined as the interval from post-treatment scan to eventual progression at follow-up FDG PET-CTs. Possible association between each functional parameter and metabolic/clinical-laboratory progression or response was determined. Kaplan-Meier curves allowed to depict the TMP trend according to FDG PET-CT parameters.

Results

Twenty-eight patients were included. Significantly higher ΔrPET and ΔqPET values were observed in ten patients with “metabolic response”, with respect to 18 patients having “metabolic progression” (median 0.62 [IQR 0.32 – 1.34] vs median 0.00 [IQR -0.25 – 0.49] for ΔrPET; P = 0.045; median 0.51 [IQR 0.32 – 1.13] vs median 0.00 [IQR -0.31 – 0.67] for ΔqPET; P = 0.035). Neither normalized nor non normalized parameters differed significantly between the 20 patients with “clinical-laboratory response” and the eight patients with “clinical-laboratory progression”. ΔrPET value lower than 0.38 and ΔqPET value lower than 0.27 predicted a significantly shorter TMP (P = 0.003 and P = 0.005, respectively).

Conclusions

Normalized semi-quantitative parameters are effective in predicting persistent response to treatment and shorter TMP in patients with MM undergoing iChT and HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moreau P, San Miguel J, Sonneveld P, Mateos MV, Zamagni E, Avet-Loiseau H, et al. Multiple myeloma: ESMO clinical practice guidelines. Ann Oncol. 2017;28(suppl.4):iv52–61.

    Article  CAS  Google Scholar 

  2. Kehrer M, Koob S, Strauss A, Wirtz DC, Schmolders J. Multiple myeloma—current status in diagnostic testing and therapy. Z Orthop Unfall. 2017;155:575–86. https://doi.org/10.1055/s-0043-110224.

    Article  PubMed  Google Scholar 

  3. Qian J, Jin J, Luo H, Jin C, Wang L, Qian W, et al. Analysis of clinical characteristics and prognostic factors of multiple myeloma: a retrospective single-center study of 787 cases. Hematology. 2017;22:472–6. https://doi.org/10.1080/10245332.2017.1309493.

    Article  PubMed  Google Scholar 

  4. Castillo JJ, Jurczyszyn A, Brozova L, Crusoe E, Czepiel J, Davila J, et al. IgM myeloma: a multicenter retrospective study of 134 patients. Am J Hematol. 2017;92:746–51. https://doi.org/10.1002/ajh.24753.

    Article  CAS  PubMed  Google Scholar 

  5. Howell D, Smith A, Appleton S, Bagguley T, Macleod U, Cook G, et al. Multiple myeloma: routes to diagnosis, clinical characteristics and survival—findings from a UK population-based study. Br J Haematol. 2017;177:67–71. https://doi.org/10.1111/bjh.14513.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kumar S, Lacy MQ, Dispenzieri A, Rajkumar SV, Fonseca R, Geyer S, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34:161–7.

    Article  CAS  Google Scholar 

  7. Mohty M, Harousseau JL. Treatment of autologous stem cell transplant-eligible multiple myeloma patients: ten questions and answers. Haematologica. 2014;99:408–16.

    Article  Google Scholar 

  8. Morris C, Iacobelli S, Brand R, Bjorkstrand B, Drake M, Niederwieser D, et al. Chronic Leukaemia Working Party Myeloma Subcommittee, European Group for Blood and Marrow Transplantation. Benefit and timing of second transplantations in multiple myeloma: clinical findings and methodological limitations in a European Group for Blood and Marrow Transplantation registry study. J Clin Oncol. 2004;22:1674–81.

    Article  CAS  Google Scholar 

  9. Gay F, Engelhardt M, Terpos E, Wäsch R, Giaccone L, Auner HW, et al. From transplant to novel cellular therapies in multiple myeloma: EMN guidelines and future perspectives. Haematologica. 2017. https://doi.org/10.3324/haematol.2017.174573.

    Article  Google Scholar 

  10. Mesguich C, Fardanesh R, Tanenbaum L, Chari A, Jagannath S, Kostakoglu L. State of the art imaging of multiple myeloma: comparative review of FDG PET/CT imaging in various clinical settings. Eur J Radiol. 2014;83:2203–23. https://doi.org/10.1016/j.ejrad.2014.09.012.

    Article  PubMed  Google Scholar 

  11. Ho CL, Chen S, Leung YL, Cheng T, Wong KN, Cheung SK, et al. 11C-acetate PET/CT for metabolic characterization of multiple myeloma: a comparative study with 18F-FDG PET/CT. J Nucl Med. 2014;55:749–52. https://doi.org/10.2967/jnumed.113.131169.

    Article  CAS  PubMed  Google Scholar 

  12. Dammacco F, Rubini G, Ferrari C, Vacca A, Racanelli V. 18F-FDG PET/CT: a review of diagnostic and prognostic features in multiple myeloma and related disorders. Clin Exp Med. 2015;15:1–18. https://doi.org/10.1007/s10238-014-0308-3.

    Article  CAS  PubMed  Google Scholar 

  13. Chantry A, Kazmi M, Barrington S, Goh V, Mulholland N, Streetly M, et al. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol. 2017;178:380–93. https://doi.org/10.1111/bjh.14827.

    Article  PubMed  Google Scholar 

  14. Yu Q, Shi JM, Tao Y. Clinical significance and detection techniques of minimal residual disease in multiple myeloma-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017;25:961–4. https://doi.org/10.7534/j.issn.1009-2137.2017.03.059.

    Article  PubMed  Google Scholar 

  15. Nanni C, Zamagni E. Therapy assessment in multiple myeloma with PET. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):111–7. https://doi.org/10.1007/s00259-017-3730-4.

    Article  PubMed  Google Scholar 

  16. Fonti R, Larobina M, Del Vecchio S, De Luca S, Fabbricini R, Catalano L, et al. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma. J Nucl Med. 2012;53:1829–35. https://doi.org/10.2967/jnumed.112.106500.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, Waheed S, et al. Assessment of total lesion glycolysis by 18F-FDG PET/CT significantly improves prognostic value of GEP and ISS in myeloma. Clin Cancer Res. 2017;23:1981–7.

    Article  CAS  Google Scholar 

  18. Annunziata S, Cuccaro A, Calcagni ML, Hohaus S, Giordano A, Rufini V. Interim FDG-PET/CT in Hodgkin lymphoma: the prognostic role of the ratio between target lesion and liver SUVmax (rPET). Ann Nucl Med. 2016;30:588–92. https://doi.org/10.1007/s12149-016-1092-9.

    Article  CAS  PubMed  Google Scholar 

  19. Hasenclever D, Kurch L, Mauz-Korloz C, Elsner A, Georgi T, Wallace H, et al. qPET—a quantitative extension of the Deauville scale to assess response in interim FDG-PET scans in lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:1301–8. https://doi.org/10.1007/s00259-014-2715-9.

    Article  PubMed  Google Scholar 

  20. Sachpekidis C, Mai EK, Goldschmidt H, Hillengass J, Hose D, Pan L, et al. (18)F-FDG dynamic PET/CT in patients with multiple myeloma: patterns of tracer uptake and correlation with bone marrow plasma cell infiltration rate. Clin Nucl Med. 2015;40:e300–7. https://doi.org/10.1097/RLU.0000000000000773.

    Article  PubMed  Google Scholar 

  21. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):17–31. https://doi.org/10.1007/s00259-017-3740-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, et al. Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging. 2017;44:50–62.

    Article  CAS  Google Scholar 

  23. Albano D, Bosio G, Treglia G, Giubbini R, Bertagna F. 18F-FDG PET/CT in solitary plasmacytoma: metabolic behavior and progression to multiple myeloma. Eur J Nucl Med Mol Imaging. 2018;45:77–84. https://doi.org/10.1007/s00259-017-3810-5.

    Article  PubMed  Google Scholar 

  24. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95. https://doi.org/10.1182/blood-2011-06-361386.

    Article  CAS  PubMed  Google Scholar 

  25. Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013;121:1819–23. https://doi.org/10.1182/blood-2012-08-451690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Patriarca F, Carobolante F, Zamagni E, Montefusco V, Bruno B, Englaro E, et al. The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21:1068–73. https://doi.org/10.1016/j.bbmt.2015.03.001.

    Article  PubMed  Google Scholar 

  27. Haznedar R, Akı SZ, Akdemir OU, Ozkurt ZN, Ceneli O, Yağcı M, et al. Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging. 2011;38:1046–53. https://doi.org/10.1007/s00259-011-1738-8.

    Article  CAS  PubMed  Google Scholar 

  28. Dankerl A, Liebisch P, Glatting G, Friesen C, Blumstein NM, Kocot D, et al. Multiple myeloma: molecular imaging with 11C-methionine PET/CT--initial experience. Radiology. 2007;242:498–508.

    Article  Google Scholar 

  29. Nanni C, Zamagni E, Celli M, Caroli P, Ambrosini V, Tacchetti P, et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med. 2013;38:e74–9. https://doi.org/10.1097/RLU.0b013e318266cee2.

    Article  PubMed  Google Scholar 

  30. Isoda A, Higuchi T, Nakano S, Arisaka Y, Kaira K, Kamio T, et al. 18F-FAMT in patients with multiple myeloma: clinical utility compared to 18F-FDG. Ann Nucl Med. 2012;26:811–6. https://doi.org/10.1007/s12149-012-0645-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Caldarella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripani, D., Caldarella, C., Za, T. et al. Prognostic significance of normalized FDG-PET parameters in patients with multiple myeloma undergoing induction chemotherapy and autologous hematopoietic stem cell transplantation: a retrospective single-center evaluation. Eur J Nucl Med Mol Imaging 46, 116–128 (2019). https://doi.org/10.1007/s00259-018-4108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4108-y

Keywords

Navigation