Advertisement

Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo)

  • Onofrio A. Catalano
  • Lale Umutlu
  • Niccolo Fuin
  • Matthew Louis Hibert
  • Michele Scipioni
  • Stefano Pedemonte
  • Mark Vangel
  • Andreea Maria Catana
  • Ken Herrmann
  • Felix Nensa
  • David Groshar
  • Umar Mahmood
  • Bruce R. Rosen
  • Ciprian Catana
Original Article
  • 117 Downloads

Abstract

Purpose

To compare the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo).

Methods

MoCo PET/DCE-MRI of the upper abdomen was acquired in 44 consecutive oncologic patients and compared with non-MoCo PET/MRI. SUVmax and MTV of FDG-avid upper abdominal malignant lesions were assessed on MoCo and non-MoCo PET images. Image quality was compared between MoCo DCE-MRI and non-MoCo CE-MRI, and between fused MoCo PET/MRI and fused non-MoCo PET/MRI images.

Results

MoCo PET resulted in higher SUVmax (10.8 ± 5.45) than non-MoCo PET (9.62 ± 5.42) and lower MTV (35.55 ± 141.95 cm3) than non-MoCo PET (38.11 ± 198.14 cm3; p < 0.005 for both). The quality of MoCo DCE-MRI images (4.73 ± 0.5) was higher than that of non-MoCo CE-MRI images (4.53±0.71; p = 0.037). The quality of fused MoCo-PET/MRI images (4.96 ± 0.16) was higher than that of fused non-MoCo PET/MRI images (4.39 ± 0.66; p < 0.005).

Conclusion

MoCo PET/MRI provided qualitatively better images than non-MoCo PET/MRI, and upper abdominal malignant lesions demonstrated higher SUVmax and lower MTV on MoCo PET/MRI.

Keywords

Respiratory motion correction PET/MRI Abdomen Oncology 

Abbreviations

MoCo

motion corrected

PET

positron emission tomography

MR

magnetic resonance

DCE

dynamic contrast enhanced

CE

contrast enhanced

VIBE

volume interpolated breath-hold examination

FDG

18Fluorodeoxyglucose

SUVmax

maximal standard uptake value

MTV

metabolic tumor volume.

Notes

Acknowledgments

We acknowledge the following individuals for their help with the PET/MRI data acquisition and initial processing (in alphabetical order): Grae Arabasz, Regan Butterfield, Shirley Hsu, Mary O’Hara, and Lawrence White. We gratefully acknowledge the support of NVIDIA Corporation in donating the Tesla K40 and the Titan X Pascal GPUs used for this research.

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

The clinical institutional review board approved this study. All procedures were performed in accordance with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

For this type of retrospective study formal consent is not required; however, patients provided written informed consent at the time of PET/MRI for possible usage of their data in subsequent research studies.

References

  1. 1.
    Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys. 2014;41:091905.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Callahan J, Kron T, Siva S, Simoens N, Edgar A, Everitt S, et al. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat Oncol. 2014;9:291.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kalantari F, Li T, Jin M, Wang J. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR). Phys Med Biol. 2016;61:5639–61.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Pietryga JA, Burke LMB, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 2014;271:426–34.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology. 2014;272:123–31.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2:21.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Petibon Y, Huang C, Ouyang J, Reese TG, Li Q, Syrkina A, et al. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys. 2014;41:042503.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, et al. Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med. 2015;56:890–6.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Balfour DR, Marsden PK, Polycarpou I, Kolbitsch C, King AP. Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed Eng Online. 2015;14:85.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, et al. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys. 2016;43:6234.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo D, Pedemonte S, et al. Concurrent respiratory motion correction of abdominal PET and DCE-MRI using a compressed sensing approach. J Nucl Med. 2018;  https://doi.org/10.2967/jnumed.117.203943.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Catana C. Motion correction options in PET/MRI. Semin Nucl Med. 2015;45:212–23.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chen KT, Salcedo S, Chonde DB, Izquierdo-Garcia D, Levine MA, Price JC. et al. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects. J Magn Reson Imaging. 2018;  https://doi.org/10.1002/jmri.26000.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52:154–61.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54:815–24.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kaltenbach B, Roman A, Polkowski C, Gruber-Rouh T, Bauer RW, Hammerstingl R, et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. Eur J Radiol. 2017;86:26–32.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Reiner CS, Neville AM, Nazeer HK, Breault S, Dale BM, Merkle EM, et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. Eur Radiol. 2013;23:3087–93.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lee CK, Seo N, Kim B, Huh J, Kim JK, Lee SS, et al. The effects of breathing motion on DCE-MRI images: phantom studies simulating respiratory motion to compare CAIPIRINHA-VIBE, radial-VIBE, and conventional VIBE. Korean J Radiol. 2017;18:289–98.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ogawa M, Kawai T, Kan H, Kobayashi S, Akagawa Y, Suzuki K, et al. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique. Abdom Imaging. 2015;40:3091–8.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Nyflot MJ, Lee TC, Alessio AM, Wollenweber SD, Stearns CW, Bowen SR, et al. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging. Med Phys. 2015;42:110–20.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ. A statistical model of respiratory motion and deformation of the liver. In: Niessen WJ, Viergever MA, editors. Medical image computing and computer-assisted intervention – MICCAI 2001, vol. 2208. Berlin Heidelberg: Springer; 2001. p. 1338–40.CrossRefGoogle Scholar
  29. 29.
    Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Onofrio A. Catalano
    • 1
    • 2
  • Lale Umutlu
    • 3
  • Niccolo Fuin
    • 1
  • Matthew Louis Hibert
    • 1
  • Michele Scipioni
    • 4
  • Stefano Pedemonte
    • 1
  • Mark Vangel
    • 5
  • Andreea Maria Catana
    • 6
  • Ken Herrmann
    • 7
  • Felix Nensa
    • 3
  • David Groshar
    • 8
  • Umar Mahmood
    • 1
  • Bruce R. Rosen
    • 1
  • Ciprian Catana
    • 1
  1. 1.Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUSA
  2. 2.University of Naples “Parthenope”NaplesItaly
  3. 3.Department of RadiologyUniversitat Duisburg-EssenEssenGermany
  4. 4.Department of Information EngineeringUniversity of PisaPisaItaly
  5. 5.Department of BiostatisticsMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  6. 6.Division of Gastroenterology/Hepatology, Department of MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  7. 7.Department of Nuclear MedicineUniversitat Duisburg-EssenEssenGermany
  8. 8.Assuta Medical Center and Rabin Medical Center, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations