Advertisement

Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine

  • Norbert Galldiks
  • Veronika Dunkl
  • Garry Ceccon
  • Caroline Tscherpel
  • Gabriele Stoffels
  • Ian Law
  • Otto M. Henriksen
  • Aida Muhic
  • Hans S. Poulsen
  • Jan Steger
  • Elena K. Bauer
  • Philipp Lohmann
  • Matthias Schmidt
  • Nadim J. Shah
  • Gereon R. Fink
  • Karl-Josef Langen
Original Article
  • 115 Downloads

Abstract

Background

The goal of this prospective study was to compare the value of both conventional MRI and O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET for response evaluation in glioblastoma patients treated with bevacizumab plus lomustine (BEV/LOM) at first progression.

Methods

After chemoradiation with concomitant and adjuvant temozolomide, 21 IDH wild-type glioblastoma patients at first progression (age range, 33–75 years; MGMT promoter unmethylated, 81%) were treated with BEV/LOM. Contrast-enhanced MRI and FET-PET scans were performed at baseline and after 8–10 weeks. We obtained FET metabolic tumor volumes (MTV) and tumor/brain ratios. Threshold values of FET-PET parameters for treatment response were established by ROC analyses using the post-progression overall survival (OS) ≤/>9 months as the reference. MRI response assessment was based on RANO criteria. The predictive ability of FET-PET thresholds and MRI changes on early response assessment was evaluated subsequently concerning OS using uni- and multivariate survival estimates.

Results

Early treatment response as assessed by RANO criteria was not predictive for an OS>9 months (P = 0.203), whereas relative reductions of all FET-PET parameters significantly predicted an OS>9 months (P < 0.05). The absolute MTV at follow-up enabled the most significant OS prediction (sensitivity, 85%; specificity, 88%; P = 0.001). Patients with an absolute MTV below 5 ml at follow-up survived significantly longer (12 vs. 6 months, P < 0.001), whereas early responders defined by RANO criteria lived only insignificantly longer (9 vs. 6 months; P = 0.072). The absolute MTV at follow-up remained significant in the multivariate survival analysis (P = 0.006).

Conclusions

FET-PET appears to be useful for identifying responders to BEV/LOM early after treatment initiation.

Keywords

CCNU Amino acid PET Glioma Treatment-related changes Tumour relapse 

Notes

Funding

This work was supported by the Wilhelm-Sander Stiftung, Germany (grant number 2016.069.1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed written consent was obtained from all individual participants included in the study.

References

  1. 1.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ, Advanced MRI. PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010;9:906–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Ahluwalia MS, Wen PY. Antiangiogenic therapy for patients with glioblastoma: current challenges in imaging and future directions. Expert Rev Anticancer Ther. 2011;11:653–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Langen KJ, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol. 2017;13:279–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Galldiks N, Langen KJ. Amino acid PET - an imaging option to identify treatment response, posttherapeutic effects, and tumor recurrence? Front Neurol. 2016;7:120.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–87.CrossRefPubMedGoogle Scholar
  10. 10.
    Galldiks N, Law I, Pope WB, Arbizu J, Langen KJ. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. Neuroimage Clin. 2017;13:386–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Stegmayr C, Oliveira D, Niemietz N, Willuweit A, Lohmann P, Galldiks N, et al. Influence of bevacizumab on blood-brain barrier permeability and O-(2-(18)F-Fluoroethyl)-l-tyrosine uptake in rat gliomas. J Nucl Med. 2017;58:700–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52:856–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20:3550–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Galldiks N, Rapp M, Stoffels G, Dunkl V, Sabel M, Langen KJ. Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-L-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Mol Imaging. 2013;12:273–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15:943–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377:1954–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50:167–73.CrossRefPubMedGoogle Scholar
  22. 22.
    Herzog H, Langen KJ, Weirich C, Rota Kops E, Kaffanke J, Tellmann L, et al. High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin. 2011;50:74–82.CrossRefPubMedGoogle Scholar
  23. 23.
    Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Hojgaard L, et al. Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. NeuroImage. 2014;84:206–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology. 2015;17:1293–300.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jakobsen JN, Urup T, Grunnet K, Toft A, Johansen MD, Poulsen SH, et al. Toxicity and efficacy of lomustine and bevacizumab in recurrent glioblastoma patients. J Neuro-Oncol. 2018;137:439–46.CrossRefGoogle Scholar
  26. 26.
    Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55:1611–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Cachia D, Elshafeey NA, Kamiya-Matsuoka C, Hatami M, Alfaro-Munoz KD, Mandel JJ, et al. Radiographic patterns of progression with associated outcomes after bevacizumab therapy in glioblastoma patients. J Neuro-Oncol. 2017;135:75–81.CrossRefGoogle Scholar
  28. 28.
    Nowosielski M, Wiestler B, Goebel G, Hutterer M, Schlemmer HP, Stockhammer G, et al. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology. 2014;82:1684–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Nowosielski M, Ellingson BM, Chinot OL, Garcia J, Revil C, Radbruch A, et al. Radiologic progression of glioblastoma under therapy—an exploratory analysis of AVAglio. Neuro-Oncology. 2018;20:557–66.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Norbert Galldiks
    • 1
    • 2
    • 3
  • Veronika Dunkl
    • 1
  • Garry Ceccon
    • 1
  • Caroline Tscherpel
    • 1
    • 2
  • Gabriele Stoffels
    • 2
  • Ian Law
    • 4
  • Otto M. Henriksen
    • 4
  • Aida Muhic
    • 5
  • Hans S. Poulsen
    • 5
  • Jan Steger
    • 1
  • Elena K. Bauer
    • 1
  • Philipp Lohmann
    • 2
  • Matthias Schmidt
    • 6
  • Nadim J. Shah
    • 2
    • 7
  • Gereon R. Fink
    • 1
    • 2
  • Karl-Josef Langen
    • 2
    • 8
  1. 1.Department of NeurologyUniversity Hospital CologneCologneGermany
  2. 2.Institute of Neuroscience and Medicine (INM-3, -4)Forschungszentrum JuelichJuelichGermany
  3. 3.Center of Integrated Oncology (CIO)Universities of Cologne and BonnCologneGermany
  4. 4.Department of Clinical Physiology, Nuclear Medicine & PETCopenhagen University Hospital RigshospitaletCopenhagenDenmark
  5. 5.Department of OncologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
  6. 6.Dept. of Nuclear MedicineUniversity Hospital CologneCologneGermany
  7. 7.Department of NeurologyUniversity Hospital AachenAachenGermany
  8. 8.Department of Nuclear MedicineUniversity Hospital AachenAachenGermany

Personalised recommendations