Guidelines on nuclear medicine imaging in neuroblastoma

  • Zvi Bar-SeverEmail author
  • Lorenzo Biassoni
  • Barry Shulkin
  • Grace Kong
  • Michael S. Hofman
  • Egesta Lopci
  • Irina Manea
  • Jacek Koziorowski
  • Rita Castellani
  • Ariane Boubaker
  • Bieke Lambert
  • Thomas Pfluger
  • Helen Nadel
  • Susan Sharp
  • Francesco Giammarile


Nuclear medicine has a central role in the diagnosis, staging, response assessment and long-term follow-up of neuroblastoma, the most common solid extracranial tumour in children. These EANM guidelines include updated information on 123I-mIBG, the most common study in nuclear medicine for the evaluation of neuroblastoma, and on PET/CT imaging with 18F-FDG, 18F-DOPA and 68Ga-DOTA peptides. These PET/CT studies are increasingly employed in clinical practice. Indications, advantages and limitations are presented along with recommendations on study protocols, interpretation of findings and reporting results.


Guidelines Neuroblastoma 123I-MIBG 18F-FDG PET/CT 68Ga-DOTA TATE PET/CT 18F-DOPA PET/CT Children 



These guidelines summarize the views of leading experts from the EANM and other continents and reflect recommendations for which the EANM cannot be held responsible. The recommendations should be considered in the context of good nuclear medicine practice and are not a substitute for national and international legal or regulatory provisions.

The guidelines were brought to the attention of all other EANM Committees and of the European National Societies of Nuclear Medicine. The comments and suggestions from the Oncology, Radiopharmacy and Technologist Committees and the Israeli, Belgian and Spanish National Societies are highly appreciated and have been considered for these guidelines.

Compliance with ethical standards

This article does not describe any studies with human participants or animals performed by any of the authors.

Conflicts of interest

Egesta Lopci declares that she received a grant for immunotherapy research, unrelated to these guidelines, from AIRC (Associazione Italiana per la Ricerca sul Cancro).

All other authors declare no conflicts of interest.


  1. 1.
    Wilson LM, Draper GJ. Neuroblastoma, its natural history and prognosis: a study of 487 cases. Br Med J. 1974;3:301–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Young J, Ries L, Silverberg E, Horm J, Miller R. Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer. 1986;58:598–602.PubMedCrossRefGoogle Scholar
  3. 3.
    Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18:102–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang SY, Bolch WE, Lee C, Van Brocklin HF, Pampaloni MH, Hawkins RA, et al. Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) dynamic PET/CT imaging before [131I]mIBG targeted radionuclide therapy for neuroblastoma. Mol Imaging Biol. 2015;17:284–94.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hartung-Knemeyer V, Rosenbaum-Krumme S, Buchbender C, Poppel T, Brandau W, Jentzen W, et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab. 2012;97:3833–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with I124-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Beijst C, de Keizer B, Lam M, Janssens GO, Tytgat GAM, de Jong H. A phantom study: should 124 I-mIBG PET/CT replace 123 I-mIBG SPECT/CT? Med Phys. 2017;44:1624–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Suh M, Park HJ, Choi HS, So Y, Lee BC, Lee WW. Case report of PET/CT imaging of a patient with neuroblastoma using 18F-FPBG. Pediatrics. 2014;134:e1731–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang H, Huang R, Cheung NK, Guo H, Zanzonico PB, Thaler HT, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res. 2014;20:2182–91.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, et al. Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med. 2018;59:147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pepe G, Bombardieri E, Lorenzoni A, Chiti A. Single-photon emission computed tomography tracers in the diagnostics of neuroendocrine tumors. PET Clin. 2014;9:11–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Nadel HR. SPECT/CT in pediatric patient management. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S104–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with malignant pheochromocytoma/paraganglioma and neuroblastoma. Clin Nucl Med. 2011;36:1–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.PubMedCrossRefGoogle Scholar
  15. 15.
    Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol. 2012;9:712–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging. 2012;39:57–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Kroiss A, Putzer D, Uprimny C, Decristoforo C, Gabriel M, Santner W, et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging. 2011;38:865–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Biermann M, Schwarzlmuller T, Fasmer KE, Reitan BC, Johnsen B, Rosendahl K. Is there a role for PET-CT and SPECT-CT in pediatric oncology? Acta Radiol. 2013;54:1037–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Bleeker G, Tytgat GA, Adam JA, Caron HN, Kremer LC, Hooft L, et al. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma. Cochrane Database Syst Rev. 2015;(9):CD009263.Google Scholar
  20. 20.
    Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Shulkin BL, Wieland DM, Baro ME, Ungar DR, Mitchell DS, Dole MG, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.PubMedGoogle Scholar
  22. 22.
    Ambrosini V, Morigi JJ, Nanni C, Castellucci P, Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59:58–69.PubMedGoogle Scholar
  23. 23.
    Leung A, Shapiro B, Hattner R, Kim E, de Kraker J, Ghazzar N, et al. Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med. 1997;38:1352–7.PubMedGoogle Scholar
  24. 24.
    Shulkin BL, Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med. 1998;39:679–88.PubMedGoogle Scholar
  25. 25.
    Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.PubMedCrossRefGoogle Scholar
  26. 26.
    Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52:784–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Suc A, Lumbroso J, Rubie H, Hattchouel JM, Boneu A, Rodary C, et al. Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer. 1996;77:805–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer. 2008;44:1552–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ladenstein R, Philip T, Lasset C, Hartmann O, Garaventa A, Pinkerton R, et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J Clin Oncol. 1998;16:953–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Lewington V, Lambert B, Poetschger U, Sever ZB, Giammarile F, McEwan AJ, et al. 123I-mIBG scintigraphy in neuroblastoma: development of a SIOPEN semi-quantitative reporting method by an international panel. Eur J Nucl Med Mol Imaging. 2017;44:234–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu B, Zhuang H, Servaes S. Comparison of [123I]MIBG and [131I]MIBG for imaging of neuroblastoma and other neural crest tumors. Q J Nucl Med Mol Imaging. 2013;57:21–8.PubMedGoogle Scholar
  35. 35.
    Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics. 2016;36:258–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Olivier P, Colarinha P, Fettich J, Fischer S, Frokier J, Giammarile F, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30:B45–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Vallabhajosula S, Nikolopoulou A. Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology. Semin Nucl Med. 2011;41:324–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Von Moll L, McEwan AJ, Shapiro B, Sisson JC, Gross MD, Lloyd R, et al. Iodine-131 MIBG scintigraphy of neuroendocrine tumors other than pheochromocytoma and neuroblastoma. J Nucl Med. 1987;28:979–88.Google Scholar
  41. 41.
    Jaques S Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res. 1987;47:3920–8.PubMedGoogle Scholar
  42. 42.
    Smets LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells. Cancer Res. 1989;49:2941–4.PubMedGoogle Scholar
  43. 43.
    Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med. 1985;26:576–85.PubMedGoogle Scholar
  44. 44.
    Khafagi FA, Shapiro B, Fischer M, Sisson JC, Hutchinson R, Beierwaltes WH. Phaeochromocytoma and functioning paraganglioma in childhood and adolescence: role of iodine 131 metaiodobenzylguanidine. Eur J Nucl Med. 1991;18:191–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Nakajo M, Shapiro B, Copp J, Kalff V, Gross MD, Sisson JC, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med. 1983;24:672–82.PubMedGoogle Scholar
  46. 46.
    Jacobsson H, Hellstrom PM, Kogner P, Larsson SA. Different concentrations of I-123 MIBG and in-111 pentetreotide in the two main liver lobes in children: persisting regional functional differences after birth? Clin Nucl Med. 2007;32:24–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Parisi MT, Sandler ED, Hattner RS. The biodistribution of metaiodobenzylguanidine. Semin Nucl Med. 1992;22:46–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bomanji J, Britton KE. Uterine uptake of iodine-123 metaiodobenzylguanidine during the menstrual phase of uterine cycle. Clin Nucl Med. 1987;12:601–3.PubMedCrossRefGoogle Scholar
  49. 49.
    Okuyama C, Ushijima Y, Kubota T, Yoshida T, Nakai T, Kobayashi K, et al. 123I-Metaiodobenzylguanidine uptake in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med. 2003;44:1421–5.PubMedGoogle Scholar
  50. 50.
    Farahati J, Bier D, Scheubeck M, Lassmann M, Schelper LF, Grelle I, et al. Effect of specific activity on cardiac uptake of iodine-123-MIBG. J Nucl Med. 1997;38:447–51.PubMedGoogle Scholar
  51. 51.
    Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.PubMedGoogle Scholar
  52. 52.
    Dwamena BA, Zempel S, Klopper JF, Van Heerden B, Wieland D, Shapiro B. Brain uptake of iodine-131 metaiodobenzylguanidine following therapy of malignant pheochromocytoma. Clin Nucl Med. 1998;23:441–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Mangner TJ, Tobes MC, Wieland DW, Sisson JC, Shapiro B. Metabolism of iodine-131 metaiodobenzylguanidine in patients with metastatic pheochromocytoma. J Nucl Med. 1986;27:37–44.PubMedGoogle Scholar
  54. 54.
    Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol. 2015;22:980–93.PubMedCrossRefGoogle Scholar
  55. 55.
    Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.PubMedGoogle Scholar
  56. 56.
    Wood DE, Gilday DL, Kellan J. Stable iodine requirements for thyroid gland blockage of iodinated radiopharmaceuticals. J Can Assoc Radiol. 1974;25:295–6.PubMedGoogle Scholar
  57. 57.
    Gelfand MJ, Parisi MT, Treves ST; Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med. 2011;52:318–22.Google Scholar
  58. 58.
    Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F; EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2008;35:1748.PubMedCrossRefGoogle Scholar
  59. 59.
    Lassmann M, Treves ST; EANM/SNMMI Paediatric Dosage Harmonization Working Group. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging. 2014;41:1036–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Lassmann M, Treves ST. Pediatric radiopharmaceutical administration: harmonization of the 2007 EANM Paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guideline. Eur J Nucl Med Mol Imaging. 2014;41:1636.PubMedCrossRefGoogle Scholar
  61. 61.
    Treves ST, Lassmann M. International guidelines for pediatric radiopharmaceutical administered activities. J Nucl Med. 2014;55:869–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Rufini V, Fisher GA, Shulkin BL, Sisson JC, Shapiro B. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.PubMedGoogle Scholar
  63. 63.
    Snay ER, Treves ST, Fahey FH. Improved quality of pediatric 123I-MIBG images with medium-energy collimators. J Nucl Med Technol. 2011;39:100–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu B, Servaes S, Zhuang H. SPECT/CT MIBG imaging is crucial in the follow-up of the patients with high-risk neuroblastoma. Clin Nucl Med. 2018;43:232–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Gelfand MJ. Dose reduction in pediatric hybrid and planar imaging. Q J Nucl Med Mol Imaging. 2010;54:379–88.PubMedGoogle Scholar
  66. 66.
    Gelfand MJ, Lemen LC. PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med. 2007;37:391–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D, Tudball C, et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. 2011;38:1648–58.PubMedCrossRefGoogle Scholar
  69. 69.
    Piccardo A, Puntoni M, Lopci E, Conte M, Foppiani L, Sorrentino S, et al. Prognostic value of 18F-DOPA PET/CT at the time of recurrence in patients affected by neuroblastoma. Eur J Nucl Med Mol Imaging. 2014;41:1046–56.PubMedCrossRefGoogle Scholar
  70. 70.
    Piccardo A, Lopci E, Conte M, Cabria M, Cistaro A, Garaventa A, et al. Bone and lymph node metastases from neuroblastoma detected by 18F-DOPA-PET/CT and confirmed by posttherapy 131I-MIBG but negative on diagnostic 123I-MIBG scan. Clin Nucl Med. 2014;39:e80–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Piccardo A, Lopci E, Conte M, Foppiani L, Garaventa A, Cabria M, et al. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:29–39.PubMedGoogle Scholar
  72. 72.
    Acharya J, Chang PT, Gerard P. Abnormal MIBG uptake in a neuroblastoma patient with right upper lobe atelectasis. Pediatr Radiol. 2012;42:1259–62.PubMedCrossRefGoogle Scholar
  73. 73.
    Schindler T, Yu C, Rossleigh M, Pereira J, Cohn R. False-positive MIBG uptake in pneumonia in a patient with stage IV neuroblastoma. Clin Nucl Med. 2010;35:743–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Kulatunge CR, Son H. False-positive 123I-MIBG scintigraphy due to multiple focal nodular hyperplasia. Clin Nucl Med. 2013;38:976–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Yang J, Codreanu I, Servaes S, Zhuang H. Persistent intense MIBG activity in the liver caused by prior radiation. Clin Nucl Med. 2014;39:926–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Jacobs A, Lenoir P, Delree M, Ramet J, Piepsz A. Unusual Tc-99m MDP and I-123 MIBG images in focal pyelonephritis. Clin Nucl Med. 1990;15:821–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Rottenburger C, Juettner E, Harttrampf AC, Hentschel M, Kontny U, Roessler J. False-positive radio-iodinated metaiodobenzylguanidine (123I-MIBG) accumulation in a mast cell-infiltrated infantile haemangioma. Br J Radiol. 2010;83:e168–71.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frappaz D, Giammarile F, Thiesse P, Ranchere-Vince D, Louis D, Guibaud L, et al. False positive MIBG scan. Med Pediatr Oncol. 1997;29:589–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Granata C, Carlini C, Conte M, Claudiani F, Campus R, Rizzo A. False positive MIBG scan due to accessory spleen. Med Pediatr Oncol. 2001;37:138–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol. 2013;43:418–27.PubMedCrossRefGoogle Scholar
  81. 81.
    Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Matthay KK, Brisse H, Couanet D, Couturier J, Benard J, Mosseri V, et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer. 2003;98:155–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Matthay KK, Edeline V, Lumbroso J, Tanguy ML, Asselain B, Zucker JM, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21:2486–91.PubMedCrossRefGoogle Scholar
  84. 84.
    Katzenstein HM, Cohn SL, Shore RM, Bardo DM, Haut PR, Olszewski M, et al. Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol. 2004;22:3909–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Ady N, Zucker JM, Asselain B, Edeline V, Bonnin F, Michon J, et al. A new 123I-MIBG whole body scan scoring method – application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer. 1995;31A:256–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Yanik GA, Parisi MT, Shulkin BL, Naranjo A, Kreissman SG, London WB, et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. J Nucl Med. 2013;54:541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med. 1992;33:1735–40.PubMedGoogle Scholar
  88. 88.
    Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.PubMedGoogle Scholar
  89. 89.
    Kushner BH, Yeh SD, Kramer K, Larson SM, Cheung NK. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J Clin Oncol. 2003;21:1082–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheung NK, Kushner BH. Should we replace bone scintigraphy plus CT with MR imaging for staging of neuroblastoma? Radiology. 2003;226:286–7. Author reply 287–8.Google Scholar
  91. 91.
    Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project. Radiology. 2011;261:243–57.PubMedCrossRefGoogle Scholar
  92. 92.
    Stauss J, Hahn K, Mann M, De Palma D. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging. 2010;37:1621–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Li C, Zhang J, Chen S, Huang S, Wu S, Zhang L, et al. Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging. 2018;45:306–15.PubMedCrossRefGoogle Scholar
  96. 96.
    Sharp SE, Gelfand MJ, Absalon MJ. Altered FDG uptake patterns in pediatric lymphoblastic lymphoma patients receiving induction chemotherapy that includes very high dose corticosteroids. Pediatr Radiol. 2012;42:331–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009;36:602–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Gelfand MJ, O'Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35:984–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Parysow O, Mollerach AM, Jager V, Racioppi S, San Roman J, Gerbaudo VH. Low-dose oral propranolol could reduce brown adipose tissue F-18 FDG uptake in patients undergoing PET scans. Clin Nucl Med. 2007;32:351–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Alessio AM, Kinahan PE, Manchanda V, Ghioni V, Aldape L, Parisi MT. Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med. 2009;50:1570–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Brady SL, Shulkin BL. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction. Med Phys. 2015;42:558–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Nadel HR, Shulkin B. Pediatric positron emission tomography-computed tomography protocol considerations. Semin Ultrasound CT MR. 2008;29:271–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29:1467–86.PubMedCrossRefGoogle Scholar
  104. 104.
    Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, et al. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52:519–25.PubMedCrossRefGoogle Scholar
  105. 105.
    Colavolpe C, Guedj E, Cammilleri S, Taieb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51:828–31.PubMedCrossRefGoogle Scholar
  106. 106.
    McDowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2009;52:552.CrossRefGoogle Scholar
  107. 107.
    Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med. 2008;49:573–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. 6-18F-fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extraadrenal and hereditary pheochromocytomas and paragangliomas: correlation with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95:2800–10.PubMedCrossRefGoogle Scholar
  109. 109.
    LaBrosse E, Comoy E, Bohuon C, Zucker J, Schweisguth O. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst. 1976;57:633–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Brodeur G. Neuroblastoma and other peripheral neuroectodermal tumors. In: Fernbach D, Vietti T, editors. Clinical pediatric oncology. St. Louis: CV Mosby; 1991. p. 337.Google Scholar
  111. 111.
    Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kauhanen S, Seppanen M, Ovaska J, Minn H, Bergman J, Korsoff P, et al. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer. 2009;16:255–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, et al. 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med. 2012;37:e73–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Lu MY, Liu YL, Chang HH, Jou ST, Yang YL, Lin KH, et al. Characterization of neuroblastic tumors using 18F-FDOPA PET. J Nucl Med. 2013;54:42–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Brown WD, Oakes TR, DeJesus OT, Taylor MD, Roberts AD, Nickles RJ, et al. Fluorine-18-fluoro-L-DOPA dosimetry with carbidopa pretreatment. J Nucl Med. 1998;39:1884–91.PubMedGoogle Scholar
  116. 116.
    Paterson A, Frush DP, Donnelly LF. Helical CT of the body: are settings adjusted for pediatric patients? AJR Am J Roentgenol. 2001;176:297–301.PubMedCrossRefGoogle Scholar
  117. 117.
    Arch ME, Frush DP. Pediatric body MDCT: a 5-year follow-up survey of scanning parameters used by pediatric radiologists. AJR Am J Roentgenol. 2008;191:611–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Chondrogiannis S, Grassetto G, Marzola MC, Rampin L, Massaro A, Bellan E, et al. 18F-DOPA PET/CT biodistribution consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012;33:179–84.PubMedCrossRefGoogle Scholar
  119. 119.
    Lopci E, D'Ambrosio D, Nanni C, Chiti A, Pession A, Marengo M, et al. Feasibility of carbidopa premedication in pediatric patients: a pilot study. Cancer Biother Radiopharm. 2012;27:729–33.PubMedCrossRefGoogle Scholar
  120. 120.
    O'Dorisio MS, Chen F, O'Dorisio TM, Wray D, Qualman SJ. Characterization of somatostatin receptors on human neuroblastoma tumors. Cell Growth Differ. 1994;5:1–8.PubMedGoogle Scholar
  121. 121.
    Albers AR, O'Dorisio MS, Balster DA, Caprara M, Gosh P, Chen F, et al. Somatostatin receptor gene expression in neuroblastoma. Regul Pept. 2000;88:61–73.PubMedCrossRefGoogle Scholar
  122. 122.
    Moertel CL, Reubi JC, Scheithauer BS, Schaid DJ, Kvols LK. Expression of somatostatin receptors in childhood neuroblastoma. Am J Clin Pathol. 1994;102:752–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Georgantzi K, Tsolakis AV, Stridsberg M, Jakobson A, Christofferson R, Janson ET. Differentiated expression of somatostatin receptor subtypes in experimental models and clinical neuroblastoma. Pediatr Blood Cancer. 2011;56:584–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.PubMedCrossRefGoogle Scholar
  125. 125.
    Gains JE, Bomanji JB, Fersht NL, Sullivan T, D'Souza D, Sullivan KP, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52:1041–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35:500–16.PubMedCrossRefGoogle Scholar
  127. 127.
    Walker RC, Smith GT, Liu E, Moore B, Clanton J, Stabin M. Measured human dosimetry of 68Ga-DOTATATE. J Nucl Med. 2013;54:855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, et al. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med. 2013;54:1755–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Hartmann H, Freudenberg R, Oehme L, Zophel K, Schottelius M, Wester HJ, et al. Dosimetric measurements of (68)Ga-high affinity DOTATATE: twins in spirit – part III. Nuklearmedizin. 2014;53:211–6.Google Scholar
  130. 130.
    Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37:2004–10.Google Scholar
  131. 131.
    EANM. Dosage Calculator.Google Scholar
  132. 132.
    Machado JS, Beykan S, Herrmann K, Lassmann M. Recommended administered activities for (68)Ga-labelled peptides in paediatric nuclear medicine. Eur J Nucl Med Mol Imaging. 2016;43:2036–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Stefanelli A, Treglia G, Bruno I, Rufini V, Giordano A. Pharmacological interference with 123I-metaiodobenzylguanidine: a limitation to developing cardiac innervation imaging in clinical practice? Eur Rev Med Pharmacol Sci. 2013;17:1326–33.PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zvi Bar-Sever
    • 1
    Email author
  • Lorenzo Biassoni
    • 2
  • Barry Shulkin
    • 3
  • Grace Kong
    • 4
  • Michael S. Hofman
    • 4
  • Egesta Lopci
    • 5
  • Irina Manea
    • 6
  • Jacek Koziorowski
    • 6
  • Rita Castellani
    • 7
  • Ariane Boubaker
    • 8
  • Bieke Lambert
    • 9
  • Thomas Pfluger
    • 10
  • Helen Nadel
    • 11
  • Susan Sharp
    • 12
  • Francesco Giammarile
    • 13
  1. 1.Schneider Children’s Medical CenterTel Aviv UniversityTel AvivIsrael
  2. 2.Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
  3. 3.St Jude Children’s Research HospitalMemphisUSA
  4. 4.Peter MacCallum Cancer CentreMelbourneAustralia
  5. 5.Department of Nuclear MedicineHumanitas Clinical and Research HospitalRozzanoItaly
  6. 6.Department of Radiology and Department of Medical and Health SciencesLinköping UniversityLinköpingSweden
  7. 7.Istituto Nazional TumoriMilanItaly
  8. 8.Clinique de la SourceLausanneSwitzerland
  9. 9.Department of Nuclear Medicine Maria Middelares HospitalRadiology and Nuclear Medicine Ghent UniversityGhentBelgium
  10. 10.Ludwig Maximilian University HospitalMunichGermany
  11. 11.British Columbia Children’s HospitalVancouverCanada
  12. 12.Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  13. 13.Nuclear Medicine and Diagnostic Imaging SectionInternational Atomic Energy AgencyViennaAustria

Personalised recommendations