Is there an optimal method for measuring baseline metabolic tumor volume in diffuse large B cell lymphoma?

  • Anne-Ségolène Cottereau
  • Irene Buvat
  • Salim Kanoun
  • Annibale Versari
  • Olivier Casasnovas
  • Stephane Chauvie
  • Jérôme Clerc
  • Andrea Gallamini
  • Michel Meignan
Letter to the Editor
  • 36 Downloads

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ilyas H, Mikhaeel NG, Dunn JT, Rahman F, Moller H, Smith D, et al. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018.  https://doi.org/10.1007/s00259-018-3953-z.
  2. 2.
    Kanoun S, Tal I, Berriolo-Riedinger A, Rossi C, Riedinger JM, Vrigneaud JM, et al. Influence of software tool and methodological aspects of total metabolic tumor volume calculation on baseline [18F]FDG PET to predict survival in Hodgkin lymphoma. PLoS One. 2015;10:e0140830.  https://doi.org/10.1371/journal.pone.0140830.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cottereau AS, Hapdey S, Chartier L, Modzelewski R, Casasnovas O, Itti E, et al. Baseline total metabolic tumor volume measured with fixed or different adaptive thresholding methods equally predicts outcome in peripheral T cell lymphoma. J Nucl Med. 2017;58:276–81.  https://doi.org/10.2967/jnumed.116.180406.CrossRefPubMedGoogle Scholar
  4. 4.
    Toledano MN, Desbordes P, Banjar A, Gardin I, Vera P, Ruminy P, et al. Combination of baseline FDG PET/CT total metabolic tumour volume and gene expression profile have a robust predictive value in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2018.  https://doi.org/10.1007/s00259-017-3907-x.
  5. 5.
    Sasanelli M, Meignan M, Haioun C, Berriolo-Riedinger A, Casasnovas RO, Biggi A, et al. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:2017–22.  https://doi.org/10.1007/s00259-014-2822-7.CrossRefPubMedGoogle Scholar
  6. 6.
    Cottereau AS, Lanic H, Mareschal S, Meignan M, Vera P, Tilly H, et al. Molecular profile and FDG-PET/CT total metabolic tumor volume improve risk classification at diagnosis for patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2016;22:3801–9.  https://doi.org/10.1158/1078-0432.CCR-15-2825.CrossRefPubMedGoogle Scholar
  7. 7.
    Casasnovas O, Cottereau ASKS, Oberic L, Thieblemont C, Haioun C, et al. Baseline total metabolic voluem (TMTV0) predicts the outcome of patients with diffuse large B cell lymphoma (DLBCL) enrolled in the LNH07-3B LYSA trial. Hematol Oncol. 2015;33:100–80.CrossRefGoogle Scholar
  8. 8.
    Kostakoglu L, Martelli M, Sehn LH, Belada D, Carella AM, Chua N, et al. Baseline PET-derived metabolic tumor volume metrics predict progression-free and overall survival in DLBCL after first-line treatment: results from the phase 3 GOYA study. Blood. 2017;130:824.Google Scholar
  9. 9.
    Niyazi M, Landrock S, Elsner A, Manapov F, Hacker M, Belka C, et al. Automated biological target volume delineation for radiotherapy treatment planning using FDG-PET/CT. Radiat Oncol. 2013;8:180.  https://doi.org/10.1186/1748-717X-8-180.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Meignan M, Sasanelli M, Casasnovas RO, Luminari S, Fioroni F, Coriani C, et al. Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients. Eur J Nucl Med Mol Imaging. 2014;41:1113–22.  https://doi.org/10.1007/s00259-014-2705-y.CrossRefPubMedGoogle Scholar
  11. 11.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.  https://doi.org/10.2967/jnumed.106.035774.CrossRefPubMedGoogle Scholar
  12. 12.
    Zijlstra JM, Boellaard R. Baseline PET as prognostic marker for Hodgkin? Blood. 2018;131:3–4.  https://doi.org/10.1182/blood-2017-11-812958.PubMedGoogle Scholar
  13. 13.
    Quak E, Le Roux PY, Hofman MS, Robin P, Bourhis D, Callahan J, et al. Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients. Eur J Nucl Med Mol Imaging. 2015;42:2072–82.  https://doi.org/10.1007/s00259-015-3128-0.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anne-Ségolène Cottereau
    • 1
  • Irene Buvat
    • 2
  • Salim Kanoun
    • 3
  • Annibale Versari
    • 4
  • Olivier Casasnovas
    • 5
  • Stephane Chauvie
    • 6
  • Jérôme Clerc
    • 1
  • Andrea Gallamini
    • 7
  • Michel Meignan
    • 8
  1. 1.Department of Nuclear Medicine, Cochin Hospital, Assistance Publique Hôpitaux de ParisParis Descartes UniversityParisFrance
  2. 2.Imagerie Moléculaire In Vivo, CEA, InsermUniversity Paris Sud, CNRS, Université Paris SaclayOrsayFrance
  3. 3.Nuclear Medicine Department, Institut Claudius RegaudUniversity Cancer Institute Toulouse OncopoleToulouseFrance
  4. 4.Santa Maria Nuova Hospital-IRCCS Reggio EmiliaReggioItaly
  5. 5.Department of HematologyUniversity Hospital F. Mitterrand and INSERM 1231, CHU DijonDijonFrance
  6. 6.Department of Medical Physics‘Santa Croce e Carle’ HospitalCuneoItaly
  7. 7.Research, Innovation and Statistics DepartmentCentre Antoine-LacassagneNiceFrance
  8. 8.LYSA ImagingCreteilFrance

Personalised recommendations