Prognostic value of [18F]FDG-PET/CT in multiple myeloma patients before and after allogeneic hematopoietic cell transplantation

  • Antje Stolzenburg
  • Katharina Lückerath
  • Samuel Samnick
  • Martin Speer
  • Katharina Kneer
  • Jan-Stefan Schmid
  • Götz Ulrich Grigoleit
  • Susanne Hofmann
  • Ambros J. Beer
  • Donald Bunjes
  • Stefan Knop
  • Andreas K. Buck
  • Hermann Einsele
  • Constantin Lapa
Original Article
  • 58 Downloads

Abstract

Purpose

Despite improved treatment options, multiple myeloma (MM) remains an incurable disease. The aim of this study was to investigate the prognostic value of positron emission tomography/computed tomography (PET/CT) using 18F-2’-deoxy-2’-fluorodeoxyglucose ([18F]FDG) in MM patients shortly before and ~100 days after allogeneic hematopoietic cell transplantation (allo-HCT).

Methods

In this retrospective analysis, we evaluated [18F]FDG-PET/CT-scans of 45 heavily pre-treated MM patients before and 27 patients after scheduled allo-HCT. All scans were qualitatively and semi-quantitatively assessed for the presence of active disease. Serological response was recorded according to International Myeloma Working Group (IMWG) criteria. Progression-free (PFS) and overall survival (OS) were correlated with different PET/CT-derived parameters, such as presence, number and maximum standardized uptake value (SUVmax) of focal myeloma lesions. The impact of extramedullary disease on patient outcome was also assessed.

Results

PET/CT negativity -prior to or following allo-HCT- was a favorable prognostic factor for progression-free and overall survival (both, PFS and OS: pre-HSCT p < 0.001, post-HCT p < 0.005). High FDG-uptake (SUVmax > 6.5) revealed a significantly shortened survival compared to patients with a lower SUVmax (<6.5) (OS, 5.0 ± 1.1 m vs. not reached - longest 122.0 m; p < 0.001). Moreover, our data prove that a higher number (>3) of focal lesions (pre-HCT: both PFS and OS: p < 0.001; post-HCT PFS: p < 0.001, OS: p = 0.139) as well as the presence of extramedullary disease serve as adverse prognostic factors prior to and after allo-HCT. At response assessment after allo-HCT, [18F]FDG-PET/CT had a complementary value in prognostication in addition to IMWG criteria alone.

Conclusion

[18F]FDG-PET/CT before and shortly after allogeneic HCT is a powerful predictor for progression-free and overall survival in MM patients.

Keywords

Multiple myeloma Molecular imaging FDG-PET/CT Allogeneic hematopoietic cell transplantation 

Notes

Compliance with ethical standards

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Disclosure of potential conflict of interest

All authors state that they have nothing to disclose.

Supplementary material

259_2018_3997_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)

References

  1. 1.
    Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–e46.CrossRefPubMedGoogle Scholar
  2. 2.
    Bensinger WI, Maloney D, Storb R. Allogeneic hematopoietic cell transplantation for multiple myeloma. Sem Hematol. 2001;38(3):243–9.CrossRefGoogle Scholar
  3. 3.
    Sobh M, Michallet M, Gahrton G, Iacobelli S, van Biezen A, Schonland S, et al. Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe: trends and outcomes over 25 years. A study by the EBMT chronic malignancies working party. Leukemia. 2016;  https://doi.org/10.1038/leu.2016.101.
  4. 4.
    Hagen PA, Rodriguez TE, Smith S, Tsai S, Al-Mansour Z, Adams W, et al. Timing of allogeneic hematopoietic cell transplantation for high risk multiple myeloma. Biol Blood Marrow Transplant. 2017;23(3):S266.CrossRefGoogle Scholar
  5. 5.
    Oostvogels R, Uniken Venema SM, de Witte M, Raymakers R, Kuball J, Kroger N, et al. In search of the optimal platform for post-allogeneic SCT immunotherapy in relapsed multiple myeloma: a systematic review. Bone Marrow Transplant. 2017;52(9):1233–40.  https://doi.org/10.1038/bmt.2017.141.CrossRefPubMedGoogle Scholar
  6. 6.
    Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42(11):1539–43.  https://doi.org/10.1016/j.ejca.2005.11.037.CrossRefPubMedGoogle Scholar
  7. 7.
    Durie BG, Waxman AD, D’Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med : Off Publ, Soc Nucl Med. 2002;43(11):1457–63.Google Scholar
  8. 8.
    Regelink JC, Minnema MC, Terpos E, Kamphuis MH, Raijmakers PG, Pieters-van den Bos IC, et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: a systematic review. Brit J Haematol. 2013;162(1):50–61.  https://doi.org/10.1111/bjh.12346.CrossRefGoogle Scholar
  9. 9.
    Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76.  https://doi.org/10.1182/blood-2009-03-213280.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med : Off Publ Soc Nucl Med. 2008;49(12):1928–35.  https://doi.org/10.2967/jnumed.108.056713.CrossRefGoogle Scholar
  11. 11.
    Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol. 2005;184(4):1199–204.  https://doi.org/10.2214/ajr.184.4.01841199.CrossRefPubMedGoogle Scholar
  12. 12.
    van Lammeren-Venema D, Regelink JC. Riphagen, II, Zweegman S, Hoekstra OS, Zijlstra JM. (1)(8)F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review. Cancer. 2012;118(8):1971–81.  https://doi.org/10.1002/cncr.26467.CrossRefPubMedGoogle Scholar
  13. 13.
    Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.  https://doi.org/10.1182/blood-2011-06-361386.CrossRefPubMedGoogle Scholar
  14. 14.
    Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013;121(10):1819–23.  https://doi.org/10.1182/blood-2012-08-451690.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nanni C, Zamagni E, Farsad M, Castellucci P, Tosi P, Cangini D, et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Molec Imaging. 2006;33(5):525–31.  https://doi.org/10.1007/s00259-005-0004-3.CrossRefGoogle Scholar
  16. 16.
    Nanni C, Zamagni E, Celli M, Caroli P, Ambrosini V, Tacchetti P, et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med. 2013;38(2):e74–9.  https://doi.org/10.1097/RLU.0b013e318266cee2.CrossRefPubMedGoogle Scholar
  17. 17.
    Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73.  https://doi.org/10.1038/sj.leu.2404284.CrossRefPubMedGoogle Scholar
  18. 18.
    Patriarca F, Carobolante F, Zamagni E, Montefusco V, Bruno B, Englaro E, et al. The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2015;21(6):1068–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood. 2013:blood-2012-08-451690.Google Scholar
  20. 20.
    Lapa C, Luckerath K, Malzahn U, Samnick S, Einsele H, Buck AK, et al. 18 FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget. 2014;5(17):7381–91.  https://doi.org/10.18632/oncotarget.2290.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moreau P, Attal M, Caillot D, Macro M, Karlin L, Garderet L, et al. Prospective evaluation of magnetic resonance imaging and [18F]Fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911–8.  https://doi.org/10.1200/JCO.2017.72.2975.CrossRefPubMedGoogle Scholar
  22. 22.
    Tu H, He Y, Huang T, Choe S, Duan X, Sattar H, et al. Predictive value of 18F-FDG PET/CT scanning in combination with clinical parameters in patients with newly diagnosed multiple myeloma. Eur J Haematol. 2017.Google Scholar
  23. 23.
    Patriarca F, Einsele H, Spina F, Bruno B, Isola M, Nozzoli C, et al. Allogeneic stem cell transplantation in multiple myeloma relapsed after autograft: a multicenter retrospective study based on donor availability. Biol Blood Marrow Transplant. 2012;18(4):617–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Nanni C, Zamagni E, Cavo M, Rubello D, Tacchetti P, Pettinato C, et al. 11 C-choline vs. 18 F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;5(1):68.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cassou-Mounat T, Balogova S, Nataf V, Calzada M, Huchet V, Kerrou K, et al. 18F-fluorocholine versus 18F-fluorodeoxyglucose for PET/CT imaging in patients with suspected relapsing or progressive multiple myeloma: a pilot study. Eur J Nucl Med Mol I. 2016;43(11):1995–2004.CrossRefGoogle Scholar
  26. 26.
    Lin C, Ho C-L, Ng S-H, Wang P-N, Huang Y, Lin Y-C, et al. 11 C-acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment. Eur J Nucl Med Mol I. 2014;41(1):41–9.CrossRefGoogle Scholar
  27. 27.
    Fontana F, Ge X, Su X, Hathi D, Xiang J, Cenci S, et al. Evaluating acetate metabolism for imaging and targeting in multiple myeloma. Clin Cancer Res. 2017;23(2):416–29.CrossRefPubMedGoogle Scholar
  28. 28.
    Lapa C, Knop S, Schreder M, Rudelius M, Knott M, Jorg G, et al. C-11-methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics. 2016;6(2):254–61.  https://doi.org/10.7150/thno.13921.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lapa C, Garcia-Velloso MJ, Lückerath K, Samnick S, Schreder M, Otero PR, et al. 11C-methionine-PET in multiple myeloma: a combined study from two different institutions. Theranostics. 2017;7(11):2956.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe francophone du Myelome. Blood. 2007;109(8):3489–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Avet-Loiseau H, Attal M, Campion L, Caillot D, Hulin C, Marit G, et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t (4; 14), del (17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol. 2012;30(16):1949–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115(12):931–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Antje Stolzenburg
    • 1
  • Katharina Lückerath
    • 1
    • 2
  • Samuel Samnick
    • 1
  • Martin Speer
    • 1
  • Katharina Kneer
    • 3
  • Jan-Stefan Schmid
    • 1
  • Götz Ulrich Grigoleit
    • 4
  • Susanne Hofmann
    • 5
    • 6
  • Ambros J. Beer
    • 3
  • Donald Bunjes
    • 5
  • Stefan Knop
    • 4
  • Andreas K. Buck
    • 1
  • Hermann Einsele
    • 4
  • Constantin Lapa
    • 1
  1. 1.Department of Nuclear MedicineUniversity Hospital Würzburg, Medical CenterWürzburgGermany
  2. 2.Department of Molecular & Medical Pharmacology, Ahmanson Translational Imaging DivisionUniversity of California Los AngelesLos AngelesUSA
  3. 3.Department of Nuclear MedicineUniversity of Ulm, Medical CenterUlmGermany
  4. 4.Department of Internal Medicine II, Hematology and OncologyUniversity Hospital WürzburgWürzburgGermany
  5. 5.Department of Internal Medicine III, Hematology and OncologyUniversity of Ulm, Medical CenterUlmGermany
  6. 6.Department of Internal Medicine VUniversity Hospital HeidelbergHeidelbergGermany

Personalised recommendations