The Advantages and Challenges of Using FDG PET/CT for Response Assessment in Melanoma in the Era of Targeted Agents and Immunotherapy

  • Annie N. M. Wong
  • Grant A. McArthur
  • Michael S. Hofman
  • Rodney J. HicksEmail author
Review Article


The treatment of melanoma has been revolutionised in recent years by advances in the understanding of the genomic landscape of this disease, which has led to the development of new targeted therapeutic agents, and the ability to therapeutically manipulate the immune system through inhibition of cancer cell-T-cell interactions that prevent an adaptive immune response. While these therapeutic interventions have dramatically improved the prospects of survival for patients with advanced melanoma, they bring significant complexity to the interpretation of therapeutic response because their mechanisms and temporal profile of response vary considerably. In this review, we discuss the mode of action of these emerging therapies and their toxicities to provide a framework for the use of FDG PET/CT in therapeutic response assessment. We propose that the greatest utility of PET in assessment of response to agents that abrogate signalling related to BRAF mutation is for early assessment of resistance, while in anti-CTLA4 therapy, immunological flare can compromise early assessment of response but can identify potentially life-threatening autoimmune reactions. For anti-PD1/PDL1 therapy, the role of FDG PET/CT is more akin to its use in other solid malignancies undergoing treatment with conventional chemotherapy. However, further research is required to optimise the timing of scans and response criteria in this disease.


Melanoma Therapeutic monitoring PET Immune response BRAF 


Compliance with ethical standards

This review does not report any previously unpublished studies with human participants or animals performed by any of the authors. Therefore, ethics committee approval is not applicable.


Professor Hicks is a National Health and Medical Research (NHMRC) Practitioner Fellow supported by grant APP110850 and both Professor Hicks and Professor McArthur are recipients of a NHMRC program grant (APP1053792), which supports their research.

Conflicts of interest

None of the authors has a conflict of interest to report.


  1. 1.
    Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 2001;19(16):3635–48.Google Scholar
  2. 2.
    Crosby T, Fish R, Coles B, Mason M. Systemic treatments for metastatic cutaneous melanoma. The Cochrane Library. 2000; doi: 10.1002/14651858.CD001215.Google Scholar
  3. 3.
    Long GV, Stroyakovskiy D, Gogas H, Levchenko E, De Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. The Lancet. 2015;386:444–51.CrossRefGoogle Scholar
  4. 4.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology. 2015;16:375–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. New England Journal of Medicine. 2015;372:320–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Hodi FS, Sznol M, Kluger HM, McDermott DF, Carvajal RD, Lawrence DP, et al. Long-term survival of ipilimumab-naive patients (pts) with advanced melanoma (MEL) treated with nivolumab (anti-PD-1, BMS-936558, ONO-4538) in a phase I trial. ASCO Annual Meeting Proceedings; 2014. p. 9002.Google Scholar
  7. 7.
    Bowyer SE, Rao AD, Lyle M, Sandhu S, Long GV, McArthur GA, et al. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma research. 2014;24:504–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Porcelli L, Guida G, Tommasi S, Guida M, Azzariti A. Metastatic melanoma cells with BRAF G469A mutation: nab-paclitaxel better than vemurafenib? Cancer chemotherapy and pharmacology. 2015;76:433–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R, et al. Safety and efficacy of vemurafenib in BRAF V600E and BRAF V600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The lancet Oncology. 2014;15:323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. The Lancet. 2012;380:358–65.CrossRefGoogle Scholar
  12. 12.
    Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer discovery. 2014;4:94–109.CrossRefPubMedGoogle Scholar
  13. 13.
    Trunzer K, Pavlick AC, Schuchter L, Gonzalez R, McArthur GA, Hutson TE, et al. Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology. 2013; doi: 10.1200/JCO.2012.44.7888.PubMedGoogle Scholar
  14. 14.
    Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clinical cancer research. 2014;20:1965–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. New England Journal of Medicine. 2015;372:30–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF V600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. The Lancet Oncology. 2016;17:1248–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. New England Journal of Medicine. 2012;366:207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oberholzer PA, Kee D, Dziunycz P, Sucker A, Kamsukom N, Jones R, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. Journal of Clinical Oncology. 2012;30:316–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Mileshkin L, Hicks RJ, Hughes BG, Mitchell PL, Charu V, Gitlitz BJ, et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non–small cell lung cancer treated with erlotinib. Clinical Cancer Research. 2011;17:3304–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Blanke CD, Demetri GD, Von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al. Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. Journal of Clinical Oncology. 2008;26:620–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clinical Cancer Research. 2006;12:5659–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body 18F-fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer. 1998;82:1664–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Bastiaannet E, Oyen WJ, Meijer S, Hoekstra OS, Wobbes T, Jager PL, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. The British journal of surgery. 2006;93:243–9. doi: 10.1002/bjs.5174.CrossRefPubMedGoogle Scholar
  24. 24.
    Reinhardt MJ, Joe AY, Jaeger U, Huber A, Matthies A, Bucerius J, et al. Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Wong C, Silverman DH, Seltzer M, Schiepers C, Ariannejad M, Gambhir SS, et al. The impact of 2-deoxy-2[18F] fluoro-D-glucose whole body positron emission tomography for managing patients with melanoma: the referring physician’s perspective. Mol Imaging Biol. 2002;4:185–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Subesinghe M, Marples M, Scarsbrook AF, Smith JT. Clinical impact of (18)F-FDG PET-CT in recurrent stage III/IV melanoma: a tertiary centre Specialist Skin Cancer Multidisciplinary Team (SSMDT) experience. Insights into imaging. 2013;4:701–9. doi: 10.1007/s13244-013-0285-1.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schule SC, Eigentler TK, Garbe C, la Fougere C, Nikolaou K, Pfannenberg C. Influence of (18)F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. Eur J Nucl Med Mol Imaging. 2016;43:482–8. doi: 10.1007/s00259-015-3187-2.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim J-W, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer research. 2006;66:8927–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Sullivan LB, Gui DY, Vander Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nature Reviews Cancer. 2016;16:680–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, et al. Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development. Clinical Cancer Research. 2005;11:2785–808. doi: 10.1158/1078-0432.ccr-04-2626.CrossRefPubMedGoogle Scholar
  31. 31.
    Hicks RJ. The role of PET in monitoring therapy. Cancer Imaging. 2005;5:51–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hofman MS, Constantinidou A, Acland K, Healy C, Harries M, O’Doherty M, et al. Assessing response to chemotherapy in metastatic melanoma with FDG PET: Early experience. Nuclear medicine communications. 2007;28:902–6. doi: 10.1097/MNM.0b013e3282f1b97b.CrossRefPubMedGoogle Scholar
  33. 33.
    Strobel K, Dummer R, Steinert HC, Conzett KB, Schad K, Lago MP, et al. Chemotherapy response assessment in stage IV melanoma patients-comparison of 18F-FDG-PET/CT, CT, brain MRI, and tumormarker S-100B. European journal of nuclear medicine and molecular imaging. 2008;35:1786–95. doi: 10.1007/s00259-008-0806-1.CrossRefPubMedGoogle Scholar
  34. 34.
    Skougaard K, Nielsen D, Jensen BV, Hendel HW. Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. Journal of Nuclear Medicine. 2013;54:1026–31.CrossRefPubMedGoogle Scholar
  35. 35.
    McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB, et al. Marked, homogeneous, and early [18F] fluorodeoxyglucose–positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. Journal of Clinical Oncology. 2012;30:1628–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer discovery. 2014;4:423–33.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McArthur GA, Callahan J, Ribas A, Gonzalez R, Pavlick AC, Hamid O, et al. Metabolic tumor burden for prediction of overall survival following combined BRAF/MEK inhibition in patients with advanced BRAF mutant melanoma. ASCO Annual Meeting Proceedings; 2014. p. 9006.Google Scholar
  38. 38.
    Carlino MS, Saunders CA, Haydu LE, Menzies AM, Curtis CM, Lebowitz PF, et al. 18 F-labelled fluorodeoxyglucose–positron emission tomography (FDG–PET) heterogeneity of response is prognostic in dabrafenib treated BRAF mutant metastatic melanoma. European journal of cancer. 2013;49:395–402.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clinical cancer research. 2012;18:1386–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical cancer research. 2013;19:1225–31.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Knight DA, Ngiow SF, Li M, Parmenter T, Mok S, Cass A, et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. The Journal of clinical investigation. 2013;123:1371–81.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity. 2016;44:609–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Hu-Lieskovan S, Mok S, Moreno BH, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Science Translational medicine. 2015;7:279ra41–1.Google Scholar
  44. 44.
    Koya RC, Mok S, Otte N, Blacketor KJ, Comin-Anduix B, Tumeh PC, et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer research. 2012;72:3928–37.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. The Cancer Journal. 2000;6:S11.Google Scholar
  46. 46.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New England Journal of Medicine. 2010;363:711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer research. 2012;72:2162–71.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. Journal of Clinical Oncology. 2015; doi: 10.1200/JCO.2014.56.2736.PubMedCentralGoogle Scholar
  49. 49.
    Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. New England Journal of Medicine. 2015;372:2521–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. New England Journal of Medicine. 2015;373:123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. New England Journal of Medicine. 2015;372:311–9. doi: 10.1056/NEJMoa1411087.CrossRefPubMedGoogle Scholar
  52. 52.
    Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. Journal of Clinical Oncology. 2015;33:1430–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 Blockade with pembrolizumab in advanced Merkel-cell carcinoma. New England Journal of Medicine. 2016;374:2542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of Medicine. 2015;372:2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. The Lancet Oncology. 2015;16:908–18.CrossRefPubMedGoogle Scholar
  56. 56.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine. 2015;373:23–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Naidoo J, Page D, Li B, Connell L, Schindler K, Lacouture M, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology. 2015;26:2375–91.PubMedGoogle Scholar
  58. 58.
    Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab. Cancer. 2013;119:1675–82.CrossRefPubMedGoogle Scholar
  59. 59.
    Weber JS, Kähler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. Journal of Clinical Oncology. 2012;30:2691–7.CrossRefPubMedGoogle Scholar
  60. 60.
    O’Regan KN, Jagannathan JP, Ramaiya N, Hodi FS. Radiologic aspects of immune-related tumor response criteria and patterns of immune-related adverse events in patients undergoing ipilimumab therapy. American Journal of Roentgenology. 2011;197:W241–W6.CrossRefPubMedGoogle Scholar
  61. 61.
    Kwak JJ, Tirumani SH, Abbeele ADV, Koo PJ, Jacene HA. Cancer Immunotherapy: Imaging Assessment of Novel Treatment Response Patterns and Immune-related Adverse Events. RadioGraphics. 2015;35:424–37. doi: 10.1148/rg.352140121.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim KW, Ramaiya NH, Krajewski KM, Jagannathan JP, Tirumani SH, Srivastava A, et al. Ipilimumab associated hepatitis: imaging and clinicopathologic findings. Investigational new drugs. 2013;31:1071–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al. Pneumonitis in Patients Treated With Anti–Programmed Death-1/Programmed Death Ligand 1 Therapy. Journal of Clinical Oncology. 2016; doi: 10.1200/JCO.2016.68.2005.PubMedGoogle Scholar
  64. 64.
    Nishino M, Sholl LM, Hatabu H, Ramaiya NH, Hodi FS. Anti–PD-1–related pneumonitis during cancer immunotherapy. New England Journal of Medicine. 2015;373:288–90.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Weber JS, Postow M, Lao CD, Schadendorf D. Management of Adverse Events Following Treatment With Anti-Programmed Death-1 Agents. Oncologist. 2016;21:1230–40. doi: 10.1634/theoncologist.2016-0055.CrossRefPubMedGoogle Scholar
  66. 66.
    Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30:2691–7. doi: 10.1200/JCO.2012.41.6750.CrossRefPubMedGoogle Scholar
  67. 67.
    Bier G, Hoffmann V, Kloth C, Othman AE, Eigentler T, Garbe C, et al. CT imaging of bone and bone marrow infiltration in malignant melanoma--Challenges and limitations for clinical staging in comparison to 18FDG-PET/CT. Eur J Radiol. 2016;85:732–8. doi: 10.1016/j.ejrad.2016.01.012.CrossRefPubMedGoogle Scholar
  68. 68.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clinical Cancer Research. 2009;15:7412–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Hodi FS, Hwu W-J, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1. 1 in patients with advanced melanoma treated with pembrolizumab. Journal of Clinical Oncology. 2016; doi: 10.1200/JCO.2015.64.0391.PubMedCentralGoogle Scholar
  70. 70.
    Chiou VL, Burotto M. Pseudoprogression and Immune-Related Response in Solid Tumors. Journal of Clinical Oncology. 2015; doi: 10.1200/jco.2015.61.6870.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Müeller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. Journal of clinical oncology. 2014;32:3048–58.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kong BY, Menzies AM, Saunders CA, Liniker E, Ramanujam S, Guminski A, et al. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment Cell & Melanoma Research. 2016;29:572–7.CrossRefGoogle Scholar
  73. 73.
    Tavaré R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer research. 2016;76:73–82.CrossRefPubMedGoogle Scholar
  74. 74.
    Hofman MS, Hicks RJ. How We Read Oncologic FDG PET/CT. Cancer Imaging. 2016;16:35. doi: 10.1186/s40644-016-0091-3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Annie N. M. Wong
    • 1
    • 2
  • Grant A. McArthur
    • 1
    • 2
  • Michael S. Hofman
    • 3
  • Rodney J. Hicks
    • 2
    • 3
    Email author
  1. 1.Cancer MedicineThe Peter MacCallum Cancer CentreMelbourneAustralia
  2. 2.The Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneAustralia
  3. 3.Cancer imagingThe Peter MacCallum Cancer CentreMelbourneAustralia

Personalised recommendations