Test–retest measurements of dopamine D1-type receptors using simultaneous PET/MRI imaging

  • Simon Kaller
  • Michael Rullmann
  • Marianne Patt
  • Georg-Alexander Becker
  • Julia Luthardt
  • Johanna Girbardt
  • Philipp M. Meyer
  • Peter Werner
  • Henryk Barthel
  • Anke Bresch
  • Thomas H. Fritz
  • Swen HesseEmail author
  • Osama Sabri
Original Article



The role of dopamine D1-type receptor (D1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D1-mediated neuronal network regulation using simultaneous PET/MRI and D1R-selective [11C]SCH23390, this study investigated the stability of central D1R measurements between two independent PET/MRI sessions under baseline conditions.


Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq [11C]SCH23390, on two separate days within 2–4 weeks using a PET/MRI system. Parametric images of D1R distribution volume ratio (DVR) and binding potential (BPND) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D1R density.


The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BPND values. Accordingly, the absolute variability of BPND ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D1R content, such as the occipital cortex, with higher mean variability.


The test–retest reliability of D1R measurements in this study was very high. This was the case not only for D1R-rich brain areas, but also for regions with low D1R density. These results will provide a solid base for future joint PET/MRI data analyses in stimulation-dependent mapping of D1R-containing neurons and their effects on projections in neuronal circuits that determine behavior.


PET/MRI Dopamine Test–retest [11C]SCH23390 Dopamine receptor D1


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was conducted in keeping with the ICH Guideline for Good Clinical Practice (GCP) and approved by the local ethics committee (registration number 083/11) and the German Federal Office for Radiation Protection (number Z5-22461/2-2012-003). Informed consent was obtained from all participants included in the study.


  1. 1.
    Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology. 2015;85:1795–805.CrossRefPubMedGoogle Scholar
  2. 2.
    Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell. 2015;162:712–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clin. 2015;8:1–31.CrossRefGoogle Scholar
  4. 4.
    Alakurtti K, Johansson JJ, Joutsa J, Laine M, Backman L, Nyberg L, et al. Long-term test-retest reliability of striatal and extrastriatal dopamine D2/3 receptor binding: study with [11C]raclopride and high-resolution PET. J Cereb Blood Flow Metab. 2015;35:1199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Keeler JF, Pretsell DO, Robbins TW. Functional implications of dopamine D1 vs. D2 receptors: A ‘prepare and select’ model of the striatal direct vs. indirect pathways. Neuroscience. 2014;282:156–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–72.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A. 2016;113:2726–31.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Land BB, Narayanan NS, Liu R-J, Gianessi CA, Brayton CE, Grimaldi DM, et al. Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci. 2014;17:248–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N, et al. Increased prefrontal cortical D1 receptors in drug naive patients with schizophrenia: A PET study with [11C]NNC112. J Psychopharmacol. 2012;26:794–805.CrossRefPubMedGoogle Scholar
  10. 10.
    Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, et al. Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med. 1998;39:2061–8.PubMedGoogle Scholar
  11. 11.
    Olver JS, O’Keefe G, Jones GR, Burrows GD, Tochon-Danguy HJ, Ackermann U, et al. Dopamine D1 receptor binding in the anterior cingulate cortex of patients with obsessive–compulsive disorder. Psychiatry Res. 2010;183:85–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi H, Takano H, Kodaka F, Arakawa R, Yamada M, Otsuka T, et al. Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J Neurosci. 2010;30:3043–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL. When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacol (Berl). 2016;233:1191–201.CrossRefGoogle Scholar
  14. 14.
    Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophr Bull. 2009;35:549–62.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.PubMedGoogle Scholar
  16. 16.
    Karlsson S, Rieckmann A, Karlsson P, Farde L, Nyberg L, Bäckman L. Relationship of dopamine D1 receptor binding in striatal and extrastriatal regions to cognitive functioning in healthy humans. Neuroimage. 2011;57:346–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Takahashi H, Yamada M, Suhara T. Functional significance of central D1 receptors in cognition: Beyond working memory. J Cereb Blood Flow Metab. 2012;32:1248–58.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ott T, Jacob SN, Nieder A. Dopamine receptors differentially enhance rule coding in primate prefrontal cortex neurons. Neuron. 2014;84:1317–28.CrossRefPubMedGoogle Scholar
  19. 19.
    Puig MV, Antzoulatos EG, Miller EK. Prefrontal dopamine in associative learning and memory. Neuroscience. 2014;282:217–29.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. 2014;37:85–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Singer BF, Guptaroy B, Austin CJ, Wohl I, Lovic V, Seiler JL, et al. Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function. Eur J Neurosci. 2015;43:662–70.CrossRefGoogle Scholar
  22. 22.
    Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D. The first alcohol drink triggers mTORC1-dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J Neurosci. 2016;36:701–13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jiang L, O’Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, et al. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis. 2015;76:137–58.CrossRefPubMedGoogle Scholar
  24. 24.
    Bourne JA. SCH 23390: the first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001;7:399–414.CrossRefPubMedGoogle Scholar
  25. 25.
    Hirvonen J, Nagren K, Kajander J, Hietala J. Measurement of cortical dopamine d1 receptor binding with 11CSCH23390: a test-retest analysis. J Cereb Blood Flow Metab. 2001;21:1146–50.CrossRefPubMedGoogle Scholar
  26. 26.
    de Keyser J, Claeys A, de Backer JP, Ebinger G, Roels F, Vauquelin G. Autoradiographic localization of D1 and D2 dopamine receptors in the human brain. Neurosci Lett. 1988;91:142–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilson AA, Garcia A, Jin L, Houle S. Radiotracer synthesis from 11C-iodomethane: a remarkably simple captive solvent method. Nucl Med Biol. 2000;27:529–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to 11CDASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.CrossRefPubMedGoogle Scholar
  29. 29.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: An approach to cerebral imaging. Stuttgart, New York: G. Thieme; Thieme Medical Publishers; 1988.Google Scholar
  31. 31.
    Mai JK, Assheuer J, Paxinos G. Atlas of the human brain. 2nd ed. Amsterdam, Boston: Elsevier Academic Press; 2004.Google Scholar
  32. 32.
    Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.CrossRefPubMedGoogle Scholar
  33. 33.
    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19:231–40.PubMedGoogle Scholar
  35. 35.
    Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med. 1998;39:792–7.PubMedGoogle Scholar
  36. 36.
    Dunn JT, Clark-Papasavas C, Marsden P, Baker S, Cleij M, Kapur S, et al. Establishing test-retest reliability of an adapted 18Ffallypride imaging protocol in older people. J Cereb Blood Flow Metab. 2013;33:1098–103.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yoder KK, Wang C, Morris ED. Change in binding potential as a quantitative index of neurotransmitter release is highly sensitive to relative timing and kinetics of the tracer and the endogenous ligand. J Nucl Med. 2004;45:903–11.PubMedGoogle Scholar
  38. 38.
    Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994;11:245–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat. 2001;22:127–37.CrossRefPubMedGoogle Scholar
  40. 40.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78:189–225.PubMedGoogle Scholar
  41. 41.
    Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2016. doi: 10.1038/nn.4462.PubMedGoogle Scholar
  42. 42.
    Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with 11CNNC112 in humans: validation and reproducibility. J Cereb Blood Flow Metab. 2000;20:225–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Poels EMP, Girgis RR, Thompson JL, Slifstein M, Abi-Dargham A. In vivo binding of the dopamine-1 receptor PET tracers [11C]NNC112 and [11C]SCH23390: A comparison study in individuals with schizophrenia. Psychopharmacol (Berl). 2013;228:167–74.CrossRefGoogle Scholar
  44. 44.
    Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. Semin Nucl Med. 2015;45:224–33.CrossRefGoogle Scholar
  45. 45.
    Werner P, Barthel H, Drzezga A, Sabri O. Current status and future role of brain PET/MRI in clinical and research settings. Eur J Nucl Med Mol Imaging. 2015;42:512–26.CrossRefPubMedGoogle Scholar
  46. 46.
    Jochimsen TH, Zeisig V, Schulz J, Werner P, Patt M, Patt J, et al. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model. EJNMMI Phys. 2016;3:2.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Izquierdo-Garcia D, Catana C. MR imaging–guided attenuation correction of PET data in PET/MR imaging. PET Clin. 2016;11:129–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Simon Kaller
    • 1
  • Michael Rullmann
    • 1
    • 2
  • Marianne Patt
    • 1
  • Georg-Alexander Becker
    • 1
  • Julia Luthardt
    • 1
  • Johanna Girbardt
    • 2
  • Philipp M. Meyer
    • 1
  • Peter Werner
    • 1
  • Henryk Barthel
    • 1
  • Anke Bresch
    • 1
  • Thomas H. Fritz
    • 2
    • 3
  • Swen Hesse
    • 1
    • 4
    Email author
  • Osama Sabri
    • 1
  1. 1.Department of Nuclear MedicineUniversity of LeipzigLeipzigGermany
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  3. 3.Institute for Psychoacoustics and Electronic Music (IPEM)University of GentGhentBelgium
  4. 4.Integrated Research and Treatment Centre (IFB) Adiposity DiseasesLeipzig University Medical CentreLeipzigGermany

Personalised recommendations