Advertisement

Central noradrenaline transporter availability in highly obese, non-depressed individuals

  • Swen HesseEmail author
  • Georg-Alexander Becker
  • Michael Rullmann
  • Anke Bresch
  • Julia Luthardt
  • Mohammed K. Hankir
  • Franziska Zientek
  • Georg Reißig
  • Marianne Patt
  • Katrin Arelin
  • Donald Lobsien
  • Ulrich Müller
  • S. Baldofski
  • Philipp M. Meyer
  • Matthias Blüher
  • Mathias Fasshauer
  • Wiebke K. Fenske
  • Michael Stumvoll
  • Anja Hilbert
  • Yu-Shin Ding
  • Osama Sabri
Original Article

Abstract

Purpose

The brain noradrenaline (NA) system plays an important role in the central nervous control of energy balance and is thus implicated in the pathogenesis of obesity. The specific processes modulated by this neurotransmitter which lead to obesity and overeating are still a matter of debate.

Methods

We tested the hypothesis that in vivo NA transporter (NAT) availability is changed in obesity by using positron emission tomography (PET) and S,S-[11C]O-methylreboxetine (MRB) in twenty subjects comprising ten highly obese (body mass index BMI > 35 kg/m2), metabolically healthy, non-depressed individuals and ten non-obese (BMI < 30 kg/m2) healthy controls.

Results

Overall, we found no significant differences in binding potential (BPND) values between obese and non-obese individuals in the investigated brain regions, including the NAT-rich thalamus (0.40 ± 0.14 vs. 0.41 ± 0.18; p = 0.84) though additional discriminant analysis correctly identified individual group affiliation based on regional BPND in all but one (control) case. Furthermore, inter-regional correlation analyses indicated different BPND patterns between both groups but this did not survive testing for multiple comparions.

Conclusions

Our data do not find an overall involvement of NAT changes in human obesity. However, preliminary secondary findings of distinct regional and associative patterns warrant further investigation.

Keywords

Noradrenaline Noradrenaline transporter PET PET imaging Obesity 

Notes

Acknowledgements

The work is supported by the IFB Adiposity Diseases, Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01E01001 (http://www.bmbf.de). Results of the study were partially presented at the 29th World Congress of The International College of Neuropsychopharmacology, 2014, in Vancouver, Canada, and at the 26th Annual Congress of the European Association of Nuclear Medicine, 2013, Lyon, France.

Compliance with ethical standards

Funding

This study was supported by the German Federal Ministry of Education and Research (FKZ: 01EO1001).

Conflict of interest

The authors declare no conflicts of interest directly related to the subject of this work.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ICH Guideline for Good Clinical Practice (GCP) and with the 1964 Helsinki Declaration and its later amendments. The study was approved by the ethics committee of the Medical Faculty of the University of Leipzig (registered under the number 206-10-08032010) and the German Bundesamt für Strahlenschutz/Federal Office for Radiation Protection (number Z5-22461-2-2011-002), and registered at the European Clinical Trial Database (EudraCT 2012-000568-32) and the German Clinical Trials Register (DRKS).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Nelson DL, Gehlert DR. Central nervous system biogenic amine targets for control of appetite and energy expenditure. Endocrine. 2006;29:49–60.CrossRefPubMedGoogle Scholar
  2. 2.
    Adan RA, Vanderschuren LJ, la Fleur SE. Anti-obesity drugs and neural circuits of feeding. Trends Pharmacol Sci. 2008;29:208–17.CrossRefPubMedGoogle Scholar
  3. 3.
    Leibowitz SF. Reciprocal hunger-regulating circuits involving alpha- and beta-adrenergic receptors located, respectively, in the ventromedial and lateral hypothalamus. Proc Natl Acad Sci U S A. 1970;67:1063–70.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alexander JT, Cheung WK, Dietz CB, Leibowitz SF. Meal patterns and macronutrient intake after peripheral and PVN injections of the alpha 2-receptor antagonist idazoxan. Physiol Behav. 1993;53:623–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Date Y, Shimbara T, Koda S, Toshinai K, Ida T, Murakami N, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 2006;4:323–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Lee SJ, Diener K, Kaufman S, Krieger J, Pettersen KG, Jejelava N, et al. Limiting glucocorticoid secretion increases the anorexigenic property of Exendin-4. Mol Metab. 2016;5:552–65.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tovar S, Paeger L, Hess S, Morgan DA, Hausen AC, Brönneke HS, et al. K(ATP)-channel-dependent regulation of catecholaminergic neurons controls BAT sympathetic nerve activity and energy homeostasis. Cell Metab. 2013;18:445–55.CrossRefPubMedGoogle Scholar
  8. 8.
    Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010;21:159–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Li CS, Potenza MN, Lee DE, Planeta B, Gallezot JD, Labaree D, et al. Decreased norepinephrine transporter availability in obesity: Positron Emission Tomography imaging with (S, S)-[11C]O-methylreboxetine. Neuroimage. 2015;86:306–10.CrossRefGoogle Scholar
  10. 10.
    Schulz P, Macher JP. The clinical pharmacology of depressive states. Dialogues Clin Neurosci. 2002: 47–56.Google Scholar
  11. 11.
    Hautzinger M. The beck depression inventory in clinical practice. Nervenarzt. 1991;62:689–96.PubMedGoogle Scholar
  12. 12.
    Hilbert A, Tuschen-Caffier B. Eating disorder examination: Deutschsprachige Übersetzung. Münster: Verlag für Psychotherapie; 2006.Google Scholar
  13. 13.
    Lin KS, Ding YS. Synthesis, enantiomeric resolution, and selective C-11 methylation of a highly selective radioligand for imaging the norepinephrine transporter with positron emission tomography. Chirality. 2004;16:475–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Hesse S, Brust P, Mäding P, Becker GA, Patt M, Seese A, et al. Imaging of the brain serotonin transporters (SERT) with 18F-labelled fluoromethyl-McN5652 and PET in humans. Eur J Nucl Med Mol Imaging. 2012;39:1001–11.CrossRefPubMedGoogle Scholar
  15. 15.
    Horstmann A, Busse FP, Mathar D, Müller K, Lepsien J, Schlögl H, et al. Obesity-related differences between women and men in brain structure and goal-directed behavior. Front Hum Neurosci. 2011;5:58.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bertoldo A, Cobelli C. Physiological modelling of positron emission tomography images. In: Carson E, Cobelli C, editors. Modelling methodology for physiology and medicine. London: Elsevier; 2014. p. 417–48.CrossRefGoogle Scholar
  17. 17.
    Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;9:1096–112.CrossRefGoogle Scholar
  18. 18.
    Pietrzak RH, Gallezot JD, Ding YS, Henry S, Potenza MN, Southwick SM, et al. Association of posttraumatic stress disorder with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA Psychiat. 2013;70:1199–205.CrossRefGoogle Scholar
  19. 19.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Becker GA, Ichise M, Barthel H, Luthardt J, Patt M, Seese A, et al. PET quantification of 18F-florbetaben binding to β-amyloid deposits in human brains. J Nucl Med. 2013;54:723–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Guimarães J, Moura E, Silva E, Aguiar P, Garrett C, Vieira-Coelho MA. Locus coeruleus is involved in weight loss in a rat model of Parkinson’s disease: an effect reversed by deep brain stimulation. Brain Stimul. 2013;6:845–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Hainer V, Kabrnova K, Aldhoon B, Kunesova M, Wagenknecht M. Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci. 2006;1083:252–69.CrossRefPubMedGoogle Scholar
  23. 23.
    Takano A, Gulyás B, Varrone A, Halldin C. Comparative evaluations of norepinephrine transporter radioligands with reference tissue models in rhesus monkeys: (S, S)-[18F]FMeNER-D2 and (S, S)-[11C]MeNER. Eur J Nucl Med Mol Imaging. 2009;36:1885–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, et al. Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry. 2010;68:854–60.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vanicek T, Spies M, Rami-Mark C, Savli M, Höflich A, Kranz GS, et al. The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography. JAMA Psychiat. 2014;71:1340–9.CrossRefGoogle Scholar
  26. 26.
    Hesse S, Rullmann M, Luthardt J, Winter K, Hankir MK, Becker GA, et al. Central serotonin transporter availability in highly obese individuals compared with non-obese controls: A [11C] DASB positron emission tomography study. Eur J Nucl Med Mol Imaging. 2016;43:1096–104.CrossRefPubMedGoogle Scholar
  27. 27.
    Melasch J, Rullmann M, Hilbert A, Luthardt J, Becker GA, Patt M, et al. The central nervous norepinephrine network links a diminished sense of emotional well-being to an increased body weight. Int J Obes. 2016;40:779–87.CrossRefGoogle Scholar
  28. 28.
    Haahr ME, Hansen DL, Fisher PM, Svarer C, Stenbæk DS, Madsen K, et al. Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015;35:5884–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab. 2010;30:1682–706.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    van de Giessen E, Hesse S, Caan MW, Zientek F, Dickson JC, Tossici-Bolt L, et al. No association between striatal dopamine transporter binding and body mass index: a multi-center European study in healthy volunteers. Neuroimage. 2013;64:61–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Swen Hesse
    • 1
    • 2
    Email author
  • Georg-Alexander Becker
    • 1
  • Michael Rullmann
    • 1
    • 2
    • 3
  • Anke Bresch
    • 1
  • Julia Luthardt
    • 1
  • Mohammed K. Hankir
    • 2
  • Franziska Zientek
    • 2
  • Georg Reißig
    • 2
  • Marianne Patt
    • 1
  • Katrin Arelin
    • 3
    • 4
  • Donald Lobsien
    • 5
  • Ulrich Müller
    • 6
  • S. Baldofski
    • 2
    • 8
  • Philipp M. Meyer
    • 1
  • Matthias Blüher
    • 7
  • Mathias Fasshauer
    • 2
    • 7
  • Wiebke K. Fenske
    • 2
  • Michael Stumvoll
    • 2
    • 7
  • Anja Hilbert
    • 2
    • 8
  • Yu-Shin Ding
    • 9
  • Osama Sabri
    • 1
    • 2
  1. 1.Department of Nuclear MedicineUniversity of LeipzigLeipzigGermany
  2. 2.Integrated Treatment and Research Centre (IFB) Adiposity DiseasesLeipzig University Medical CentreLeipzigGermany
  3. 3.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  4. 4.Day Clinic for Cognitive NeurologyUniversity of LeipzigLeipzigGermany
  5. 5.Department of NeuroradiologyUniversity of LeipzigLeipzigGermany
  6. 6.Department of Psychiatry and Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK
  7. 7.Department of Internal MedicineUniversity of LeipzigLeipzigGermany
  8. 8.Department of Medical Psychology and Medical SociologyUniversity of LeipzigLeipzigGermany
  9. 9.Departments of Radiology and PsychiatryNew York University School of MedicineNew YorkUSA

Personalised recommendations