Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy

  • Masatoyo NakajoEmail author
  • Megumi Jinguji
  • Yoshiaki Nakabeppu
  • Masayuki Nakajo
  • Ryutarou Higashi
  • Yoshihiko Fukukura
  • Ken Sasaki
  • Yasuto Uchikado
  • Shoji Natsugoe
  • Takashi Yoshiura
Original Article



This retrospective study was done to examine whether the heterogeneity in primary tumour F-18-fluorodeoxyglucose (18F-FDG) distribution can predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy (CRT).


The enrolled 52 patients with esophageal cancer underwent 18F-FDG-PET/CT studies before CRT. SUVmax, SUVmean, metabolic tumour volume (MTV, SUV ≥ 2.5), total lesion glycolysis (TLG) and six heterogeneity parameters assessed by texture analysis were obtained. Patients were classified as responders or non-responders according to Response Evaluation Criteria in Solid Tumors. Progression-free survival (PFS) and overall survival (OS) were calculated by the Kaplan–Meier method. Prognostic significance was assessed by Cox proportional hazards analysis.


Thirty four non-responders showed significantly higher MTV (p = 0.006), TLG (p = 0.007), intensity variability (IV; p = 0.003) and size-zone variability (SZV; p = 0.004) than 18 responders. The positive and negative predictive values for non-responders were 77 % and 69 % in MTV, 76 % and 100 % in TLG, 78 % and 67 % in IV and 78 % and 82 % in SZV, respectively. Although PFS and OS were significantly shorter in patients with high MTV (PFS, p = 0.018; OS, p = 0.014), TLG (PFS, p = 0.009; OS, p = 0.025), IV (PFS, p = 0.013; OS, p = 0.007) and SZV (PFS, p = 0.010; OS, p = 0.007) at univariate analysis, none of them was an independent factor, while lymph node status, stage and tumour response status were independent factors at multivariate analysis.


Texture features IV and SZV, and volumetric parameters MTV and TLG can predict tumour response, but all of them have limited value in prediction of prognosis of patients with esophageal cancer treated by CRT.


Esophageal cancer 18F-FDG PET/CT Texture analysis MTV TLG 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was waived by the institutional review board for this retrospective study.

Supplementary material

259_2016_3506_MOESM1_ESM.docx (13 kb)
Table S1 (DOCX 12 kb)
259_2016_3506_MOESM2_ESM.docx (19 kb)
Table S2 (DOCX 19 kb)
259_2016_3506_MOESM3_ESM.docx (13 kb)
Table S3 (DOCX 12 kb)
259_2016_3506_MOESM4_ESM.docx (13 kb)
Table S4 (DOCX 12 kb)
259_2016_3506_MOESM5_ESM.docx (13 kb)
Table S5 (DOCX 12 kb)
259_2016_3506_MOESM6_ESM.docx (249 kb)
Table S6 (DOCX 249 kb)
259_2016_3506_Fig3_ESM.gif (49 kb)
Fig S1a

(GIF 49 kb)

259_2016_3506_Fig4_ESM.gif (51 kb)
Fig S1a

(GIF 49 kb)

259_2016_3506_Fig5_ESM.gif (56 kb)
Fig S1a

(GIF 49 kb)

259_2016_3506_MOESM7_ESM.tif (488 kb)
High Resolution Image (TIF 487 kb)
259_2016_3506_MOESM8_ESM.tif (469 kb)
High Resolution Image (TIF 469 kb)
259_2016_3506_MOESM9_ESM.tif (532 kb)
High Resolution Image (TIF 532 kb)
259_2016_3506_Fig6_ESM.gif (53 kb)
Fig S2a

(GIF 52 kb)

259_2016_3506_Fig7_ESM.gif (47 kb)
Fig S2a

(GIF 52 kb)

259_2016_3506_Fig8_ESM.gif (59 kb)
Fig S2a

(GIF 52 kb)

259_2016_3506_MOESM10_ESM.tif (511 kb)
High Resolution Image (TIF 510 kb)
259_2016_3506_MOESM11_ESM.tif (435 kb)
High Resolution Image (TIF 435 kb)
259_2016_3506_MOESM12_ESM.tif (576 kb)
High Resolution Image (TIF 576 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statics. CA Cancer J Clin. 2011;61:69–90.CrossRefGoogle Scholar
  2. 2.
    Higuchi K, Koizumi W, Tanabe S, Sasaki T, Katada C, Azuma M, et al. Current management of esophageal squamous-cell carcinoma in Japan and other countries. Gastrointest Cancer Res. 2009;3:153–61.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kato H, Fukuchi M, Manda R, Faried A, Takita J, Nakajima M, et al. The effectiveness of planned esophagectomy after neoadjuvant chemoradiotherapy for advanced esophageal carcinomas. Anticancer Res. 2004;24:4091–6.Google Scholar
  4. 4.
    Suzuki A, Xiao L, Hayashi Y, Blum MA, Welsh JW, Lin SH, et al. Nomograms for prognostication of outcome in patients with esophageal and gastroesophageal carcinoma undergoing definitive chemoradiotherapy. Oncology. 2012;82:108–13.CrossRefGoogle Scholar
  5. 5.
    Morita M, Kumashiro R, Hisamatsu Y, Nakanishi R, Egashira A, Saeki H, et al. Clinical significance of salvage esophagectomy for remnant or recurrent cancer following definitive chemoradiotherapy. J Gastroenterol. 2011;46:1284–91.CrossRefGoogle Scholar
  6. 6.
    Kato K, Muro K, Minashi K, Ohtsu A, Ishikura S, Boku N, et al. Phase II study of chemoradiotherapy with 5-fluorouracil and cisplatin for Stage II-III esophageal squamous cell carcinoma: JCOG trial (JCOG 9906). Int J Radiat Oncol Biol Phys. 2011;81:684–90.CrossRefGoogle Scholar
  7. 7.
    Stahl M, Stuschke M, Lehmann N, Meyer HJ, Walz MK, Seeber S, et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23:2310–7.CrossRefGoogle Scholar
  8. 8.
    von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22.CrossRefGoogle Scholar
  9. 9.
    Kato H, Nakajima M. The efficacy of FDG-PET for the management of esophageal cancer: review article. Ann Thorac Cardiovasc Surg. 2012;18:412–9.CrossRefGoogle Scholar
  10. 10.
    Hatt M, Visvikis D, Pradier O, Cheze-le RC. Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595–606.CrossRefGoogle Scholar
  11. 11.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009;42:1162–71.CrossRefGoogle Scholar
  12. 12.
    Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of 18F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRefGoogle Scholar
  13. 13.
    Lee HS, Oh JS, Park YS, Jang SJ, Choi IS, Ryu JS. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT. Ann Nucl Med. 2016;30:309–19.CrossRefGoogle Scholar
  14. 14.
    Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2016;43:1461–8.CrossRefGoogle Scholar
  15. 15.
    Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, et al. Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys. 2005;62:545–53.CrossRefGoogle Scholar
  16. 16.
    van Baardwijk A, Bosmans G, van Suylen RJ, van Kroonenburgh M, Hochstenbag M, Geskes G, et al. Correlation of intra-tumour heterogeneity on 18F-FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol. 2008;87:55–8.CrossRefGoogle Scholar
  17. 17.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.CrossRefGoogle Scholar
  18. 18.
    Asselin MC, O’Connor JP, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.CrossRefGoogle Scholar
  19. 19.
    Cheng NM, Fang YH, Chang JT, Huang CG, Tsan DL, Ng SH, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.CrossRefGoogle Scholar
  20. 20.
    Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefGoogle Scholar
  21. 21.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.CrossRefGoogle Scholar
  22. 22.
    Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, et al. Spatial-temporal [18F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1375–82.CrossRefGoogle Scholar
  23. 23.
    Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.CrossRefGoogle Scholar
  24. 24.
    Yip SS, Coroller TP, Sanford NN, Huynh E, Mamon H, Aerts HJ, et al. Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Phys Med Biol. 2016;61:906–22.CrossRefGoogle Scholar
  25. 25.
    Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The precision of textural analysis in 18F-FDG-PET scans of oesophageal cancer. Eur Radiol. 2015;25:2805–12.CrossRefGoogle Scholar
  26. 26.
    Dong X, Xing L, Wu P, Fu Z, Wan H, Li D, et al. Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage. Nucl Med Commun. 2013;34:40–6.CrossRefGoogle Scholar
  27. 27.
    Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.CrossRefGoogle Scholar
  28. 28.
    Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17:1721–4.CrossRefGoogle Scholar
  29. 29.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.CrossRefGoogle Scholar
  30. 30.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefGoogle Scholar
  31. 31.
    Gebejes A, Huertas R. Texture characterization based on grey-level Co-occurrence matrix. Proc ICTIC (Proc Conf Inf Manag Sci). 2013;2:375–8.Google Scholar
  32. 32.
    Cheng NM, Fang YH, Lee LY, Chang JT, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.CrossRefGoogle Scholar
  33. 33.
    Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefGoogle Scholar
  34. 34.
    Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55:37–42.CrossRefGoogle Scholar
  35. 35.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.CrossRefGoogle Scholar
  36. 36.
    Arslan N, Miller TR, Dehdashti F, Battafarano RJ, Siegel BA. Evaluation of response to neoadjuvant therapy by quantitative 2- deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol. 2002;4:301–10.CrossRefGoogle Scholar
  37. 37.
    Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008;89:278–86.CrossRefGoogle Scholar
  38. 38.
    Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Masatoyo Nakajo
    • 1
    Email author
  • Megumi Jinguji
    • 1
  • Yoshiaki Nakabeppu
    • 1
  • Masayuki Nakajo
    • 2
  • Ryutarou Higashi
    • 1
  • Yoshihiko Fukukura
    • 1
  • Ken Sasaki
    • 3
  • Yasuto Uchikado
    • 3
  • Shoji Natsugoe
    • 3
  • Takashi Yoshiura
    • 1
  1. 1.Department of Radiology, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
  2. 2.Department of RadiologyNanpuh HospitalKagoshimaJapan
  3. 3.Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan

Personalised recommendations