Advertisement

Decreased in vivo availability of the cannabinoid type 2 receptor in Alzheimer’s disease

  • Rawaha AhmadEmail author
  • Andrey Postnov
  • Guy Bormans
  • Jan Versijpt
  • Mathieu Vandenbulcke
  • Koen Van Laere
Original Article

Abstract

Purpose

The cannabinoid type 2 receptor (CB2R) is expressed by immune cells such as monocytes and macrophages. In the brain, CB2R is primarily found on microglia. CB2R upregulation has been reported in animal models of Alzheimer’s disease, with a preferential localization near amyloid beta (Aβ) plaques, and in patients post mortem. We performed in vivo brain imaging and kinetic modelling of the CB2R tracer [11C]NE40 in healthy controls (HC) and in patients with Alzheimer’s disease (AD) to investigate whether higher CB2R availability regionally colocalized to Aβ deposits is present in vivo.

Methods

Dynamic 90-min [11C]NE40 PET scans were performed in eight HC and nine AD patients with full kinetic modelling using arterial sampling and metabolite correction and partial volume correction. All AD patients received a static [11C]PIB scan 40 min after injection. In four HC, a retest scan with [11C]NE40 PET was performed within 9 weeks to investigate test–retest characteristics.

Results

[11C]NE40 was metabolized quickly leading to 50 % of intact tracer 20 min after injection and 20 % at 90 min. A two-tissue kinetic model fitted most of the time–activity curves best; both binding potential (BPND) and distribution volume (V T) parameters could be used. Brain uptake was generally low with an average K 1 value of 0.07 ml/min/ml tissue. V T and BPND were in the range of 0.7 – 1.8 and 0.6 – 1.6, respectively. Test values in HC were about 30 % for V T and BPND. AD patients showed overall significantly lower CB2R binding. No relationship was found between regional or global amyloid load and CB2R availability.

Conclusion

Kinetic modelling of [11C]NE40 is possible with a two-tissue reversible model. In contrast to preclinical and post-mortem data, [11C]NE40 PET shows lower CB2R availability in vivo in AD patients, with no relationship to Aβ plaques. A possible explanation for these findings is that [11C]NE40 binds to CB2R with lower affinity and/or selectivity than to CB1R.

Keywords

Cannabinoid type 2 receptor CB2Neuroinflammation PET imaging Alzheimer’s disease 

Notes

Acknowledgments

We thank Prof. Dr. Wim Vandenberghe for revising the manuscript. We also thank Mr. Kwinten Porters, Mrs. Mieke Steukers and Ms. Hannelore Bels, as well as the clinical PET radiopharmacy team (especially Mrs. Marva Bex and Dr. Pharm. Kim Serdons), for their contribution to the execution of the study. K.V.L. is Senior Research Fellow for the Flemish Scientific Research Foundation, Belgium (FWO Vlaanderen). This research was partially sponsored by EU FP7 grant FP7/2007-2013, INMiND, grant agreement no. 278850.

Compliance with ethical standards

Conflicts of interest

None.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

259_2016_3457_MOESM1_ESM.docx (93 kb)
ESM 1 (DOCX 92 kb)

References

  1. 1.
    Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis. 2010;37:510–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi: 10.1016/S1474-4422(15)70016-5.CrossRefPubMedGoogle Scholar
  4. 4.
    Ory D, Celen S, Verbruggen A, Bormans G. PET radioligands for in vivo visualization of neuroinflammation. Curr Pharm Des. 2014;20:5897–913.CrossRefPubMedGoogle Scholar
  5. 5.
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, et al. Microglial activation in Alzheimer’s disease: an (R)-[11C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34:128–36.CrossRefPubMedGoogle Scholar
  7. 7.
    Carrier EJ, Patel S, Hillard CJ. Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord. 2005;4:657–65.CrossRefPubMedGoogle Scholar
  8. 8.
    Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, et al. Cannabinoid CB2 receptors in a mouse model of abeta amyloidosis: immunohistochemical analysis and suitability as a PET biomarker of neuroinflammation. PLoS One. 2015;10:e0129618.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci. 2003;23:11136–41.PubMedGoogle Scholar
  10. 10.
    Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington’s disease excitotoxicity. Brain. 2009;132:3152–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci. 2009;29:2177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Slavik R, Herde AM, Bieri D, Weber M, Schibli R, Kramer SD, et al. Synthesis, radiolabeling and evaluation of novel 4-oxo-quinoline derivatives as PET tracers for imaging cannabinoid type 2 receptor. Eur J Med Chem. 2015;92:554–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Hortala L, Arnaud J, Roux P, Oustric D, Boulu L, Oury-Donat F, et al. Synthesis and preliminary evaluation of a new fluorine-18 labelled triazine derivative for PET imaging of cannabinoid CB2 receptor. Bioorg Med Chem Lett. 2014;24:283–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Teodoro R, Moldovan RP, Lueg C, Gunther R, Donat CK, Ludwig FA, et al. Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB2 receptors. Org Med Chem Lett. 2013;3:11.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, et al. Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol. 2013;15:384–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Evens N, Vandeputte C, Coolen C, Janssen P, Sciot R, Baekelandt V, et al. Preclinical evaluation of [11C]NE40, a type 2 cannabinoid receptor PET tracer. Nucl Med Biol. 2012;39:389–99.CrossRefPubMedGoogle Scholar
  17. 17.
    Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6:734–46.CrossRefPubMedGoogle Scholar
  18. 18.
    Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Evens N, Muccioli GG, Houbrechts N, Lambert DM, Verbruggen AM, Van Laere K, et al. Synthesis and biological evaluation of carbon-11- and fluorine-18-labeled 2-oxoquinoline derivatives for type 2 cannabinoid receptor positron emission tomography imaging. Nucl Med Biol. 2009;36:455–65.CrossRefPubMedGoogle Scholar
  20. 20.
    Burns HD, Van Laere K, Sanabria-Bohorquez S, Hamill TG, Bormans G, Eng WS, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A. 2007;104:9800–5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19:224–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;ac-19:716–23.Google Scholar
  23. 23.
    Gunn RN, Gunn SR, Turkheimer FE, Aston JA, Cunningham VJ. Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab. 2002;22:1425–39.CrossRefPubMedGoogle Scholar
  24. 24.
    Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab. 1993;13:15–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.PubMedGoogle Scholar
  26. 26.
    Ahmad R, Goffin K, Van den Stock J, De Winter FL, Cleeren E, Bormans G, et al. In vivo type 1 cannabinoid receptor availability in Alzheimer’s disease. Eur Neuropsychopharmacol. 2014;24:242–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BN, et al. Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta. 2016;1862:425–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Venneti S, Lopresti BJ, Wang G, Hamilton RL, Mathis CA, Klunk WE, et al. PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging. 2009;30:1217–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136:2228–38.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015;35:766–72. doi: 10.1038/jcbfm.2014.261.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Gulyas B, et al. In vivo imaging of the 18-kDa translocator protein (TSPO) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. Eur J Nucl Med Mol Imaging. 2013;40:921–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Stefaniak J, O’Brien J. Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry. 2016;87:21–8.PubMedGoogle Scholar
  33. 33.
    Fan Z, Harold D, Pasqualetti G, Williams J, Brooks DJ, Edison P. Can studies of neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort? J Nucl Med. 2015;56:707–13.CrossRefPubMedGoogle Scholar
  34. 34.
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.CrossRefPubMedGoogle Scholar
  35. 35.
    Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370:1706–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071:10–23.CrossRefPubMedGoogle Scholar
  38. 38.
    Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci. 2006;1074:514–36.CrossRefPubMedGoogle Scholar
  39. 39.
    Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci. 2007;28:39–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rawaha Ahmad
    • 1
    • 2
    Email author
  • Andrey Postnov
    • 1
    • 3
  • Guy Bormans
    • 4
  • Jan Versijpt
    • 5
  • Mathieu Vandenbulcke
    • 6
  • Koen Van Laere
    • 1
    • 2
  1. 1.Department of Imaging & Pathology, Nuclear Medicine and Molecular ImagingKU Leuven and University Hospitals LeuvenLeuvenBelgium
  2. 2.Division of Nuclear MedicineUniversity Hospital LeuvenLeuvenBelgium
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Laboratory for RadiopharmacyKU LeuvenLeuvenBelgium
  5. 5.Department of NeurologyUniversity Hospital BrusselsBrusselsBelgium
  6. 6.Old Age Psychiatry, Department of PsychiatryKU Leuven and University Hospitals LeuvenLeuvenBelgium

Personalised recommendations