Striatal hypometabolism in premanifest and manifest Huntington’s disease patients

  • Diego Alfonso López-Mora
  • Valle Camacho
  • Jesús Pérez-Pérez
  • Saül Martínez-Horta
  • Alejandro Fernández
  • Frederic Sampedro
  • Alberto Montes
  • Gloria Andrea Lozano-Martínez
  • Beatriz Gómez-Anson
  • Jaime Kulisevsky
  • Ignasi Carrió
Original Article

Abstract

Purpose

To assess metabolic changes in cerebral 18F-FDG PET/CT in premanifest and manifest Huntington’s disease (HD) subjects compared to a control group and to correlate 18F-FDG uptake patterns with different disease stages.

Materials and methods

Thirty-three gene-expanded carriers (Eight males; mean age: 43 y/o; CAG > 39) were prospectively included. Based on the Unified Huntington’s Disease Rating Scale Total Motor Score and the Total Functional Capacity, subjects were classified as premanifest (preHD = 15) and manifest (mHD = 18). Estimated time disease-onset was calculated using the Langbehn formula, which allowed classifying preHD as far-to (preHD-A) and close-to (PreHD-B) disease-onset. Eighteen properly matched participants were included as a control group (CG). All subjects underwent brain 18F-FDG PET/CT and MRI. 18F-FDG PET/CT were initially assessed by two nuclear medicine physicians identifying qualitative metabolic changes in the striatum. Quantitative analysis was performed using SPM8 with gray matter atrophy correction using the BPM toolbox.

Results

Visual analysis showed a marked striatal hypometabolism in mHD. A normal striatal distribution of 18F-FDG uptake was observed for most of the preHD subjects. Quantitative analysis showed a significant striatal hypometabolism in mHD subjects compared to CG (p < 0.001 uncorrected, k = 50 voxels). In both preHD groups we observed a significant striatal hypometabolism with respect to CG (p < 0.001 uncorrected, k = 50 voxels). In mHD subjects we observed a significant striatal hypometabolism with respect to both preHD groups (p < 0.001 uncorrected, k = 50 voxels).

Conclusion

18F-FDG PET/CT might be a helpful tool to identify patterns of glucose metabolism in the striatum across the stages of HD and might be relevant in assessing the clinical status of gene-expanded HD carriers due to the fact that dysfunctional glucose metabolism begins at early preHD stages of the disease. 18F-FDG PET/CT appears as a promising method to monitor the response to disease-modifying therapies even if applied in premanifest subjects.

Keywords

Huntington’s disease 18F-FDG PET/CT Neurodegeneration imaging Premanifest HD Striatal hypometabolism Movement disorder 

References

  1. 1.
    Huntington Study Group. Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord. 1996;11(2):136–42.Google Scholar
  2. 2.
    The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.Google Scholar
  3. 3.
    Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A. 1999;96(8):4604–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med. 2006;47(2):215–22.PubMedGoogle Scholar
  5. 5.
    Politis M, Piccini P. Positron emission tomography imaging in neurological disorders. J Neurol. 2012;259(9):1769–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain. 1990;113(5):1405–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, et al. Huntington’s disease progression. PET and clinical observations. Brain. 1999;122(1):2353–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Paulsen JS. Functional imaging in Huntington’s disease. Exp Neurol. 2009;216(2):272–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982;12(5):425–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986;20(3):296–303.CrossRefPubMedGoogle Scholar
  11. 11.
    Hayden MR, Martin WR, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, et al. Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology. 1986;36(7):888–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Young AB, Penney JB, Starosta-Rubinstein S, Markel D, Berent S, Rothley J, et al. Normal caudate glucose metabolism in persons at risk for Huntington’s disease. Arch Neurol. 1987;44(3):254–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayden MR, Hewitt J, Stoessl AJ, Clark C, Ammann W, Martin WR. The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology. 1987;37(9):1441–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med. 1987;316(7):357–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuwert T, Ganslandt T, Jansen P, Jülicher F, Lange H, Herzog H, et al. Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J Comput Assist Tomogr. 1992;16(5):789–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain. 1996;119(6):2085–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39(6):1030–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Huntington Study Group. Unified Huntington’s disease rating scale: reliability and consistency. Huntington Study Group. Mov Disord. 1996;11:136–42.CrossRefGoogle Scholar
  19. 19.
    Feigin A, Kieburtz K, Bordwell K, Como P, Steinberg K, Sotack J, et al. Functional decline in Huntington’s disease. Mov Disord. 1995;10:211–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RAC, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8(9):791–801.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004;65(4):267–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8:791–801.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Lange C, Suppa P, Frings L, Brenner W, Spies L, Buchert R. Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion. J Alzheimers Dis. 2015;49(4):945–59.CrossRefPubMedGoogle Scholar
  25. 25.
    Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S, et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. Neuroimage. 2007;34(1):137–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Shin H, Kim MH, Lee SJ, Lee K-H, Kim M-J, Kim JS, et al. Decreased metabolism in the cerebral cortex in early-stage Huntington’s disease: a possible biomarker of disease progression? J Clin Neurol. 2013;9(1):21–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. Metabolic network abnormalities in early Huntington’s disease: an [18F]FDG PET study. J Nucl Med. 2001;42(11):1591–5.PubMedGoogle Scholar
  28. 28.
    Pagano G, Niccolini F, Politis M. Current status of PET imaging in Huntington’s disease. Eur J Nucl Med Mol Imaging. 2016;43(6):1171–82.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Feigin A, Tang C, Ma Y, Mattis P, Zgaljardic D, Guttman M, et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain. 2007;130(11):2858–67.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J. Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol. 1996;53(12):1293–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Antonini A, Leenders KL, Eidelberg D. [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol. 1998;43(2):253–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Panov AV, Gutekunst C-A, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci. 2002;5(8):731–6.PubMedGoogle Scholar
  33. 33.
    Beal MF. Energetics in the pathogenesis of neurodegenrative diseases. Trends Neurosci. 2000;23:298–304.CrossRefPubMedGoogle Scholar
  34. 34.
    Squitieri F, Orobello S, Cannella M, Martino T, Romanelli P, Giovacchini G, et al. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging. 2009;36(7):1113–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Aylward EH. Changes in MRI striatal volumes as a biomarker in preclinical Huntigton’s disease. Brain Res Bull. 2007;72:152–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Paulsen JS, Nopoulos PC, Aylward E, Ross CA, Johnson H, Magnotta VA, et al. Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res Bull. 2010;82(3–4):201–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Aylward EH, Codori AM, Rosenblatt A, Sherr M, Brandt J, Stine OC, et al. Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord. 2000;15(3):552–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Berent S, Giordani B, Lehtinen S, Markel D, Penney JB, Buchtel HA, et al. Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol. 1988;23:541–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diego Alfonso López-Mora
    • 1
  • Valle Camacho
    • 1
  • Jesús Pérez-Pérez
    • 2
  • Saül Martínez-Horta
    • 2
  • Alejandro Fernández
    • 1
  • Frederic Sampedro
    • 3
  • Alberto Montes
    • 1
  • Gloria Andrea Lozano-Martínez
    • 4
  • Beatriz Gómez-Anson
    • 4
  • Jaime Kulisevsky
    • 2
  • Ignasi Carrió
    • 1
  1. 1.Nuclear Medicine Department, Hospital Sant PauAutonomous University of BarcelonaBarcelonaSpain
  2. 2.Movement Disorders Unit, Neurology Department, Hospital Sant PauAutonomous University of BarcelonaBarcelonaSpain
  3. 3.University of BarcelonaBarcelonaSpain
  4. 4.Neuroradiology, Radiology Department, Hospital Sant PauAutonomous University of BarcelonaBarcelonaSpain

Personalised recommendations