Characterization of PET/CT images using texture analysis: the past, the present… any future?

  • Mathieu HattEmail author
  • Florent Tixier
  • Larry Pierce
  • Paul E. Kinahan
  • Catherine Cheze Le Rest
  • Dimitris Visvikis
Review Article


After seminal papers over the period 2009 – 2011, the use of texture analysis of PET/CT images for quantification of intratumour uptake heterogeneity has received increasing attention in the last 4 years. Results are difficult to compare due to the heterogeneity of studies and lack of standardization. There are also numerous challenges to address. In this review we provide critical insights into the recent development of texture analysis for quantifying the heterogeneity in PET/CT images, identify issues and challenges, and offer recommendations for the use of texture analysis in clinical research. Numerous potentially confounding issues have been identified, related to the complex workflow for the calculation of textural features, and the dependency of features on various factors such as acquisition, image reconstruction, preprocessing, functional volume segmentation, and methods of establishing and quantifying correspondences with genomic and clinical metrics of interest. A lack of understanding of what the features may represent in terms of the underlying pathophysiological processes and the variability of technical implementation practices makes comparing results in the literature challenging, if not impossible. Since progress as a field requires pooling results, there is an urgent need for standardization and recommendations/guidelines to enable the field to move forward. We provide a list of correct formulae for usual features and recommendations regarding implementation. Studies on larger cohorts with robust statistical analysis and machine learning approaches are promising directions to evaluate the potential of this approach.


PET/CT Image texture Heterogeneity Critical review Recommendations 



The authors thank Issam El Naqa, Philippe Lambin, Hugo Aerts, Ralph Leijenaar, Floris Van Velden, Martin Vallières, Arman Rahmim, Matt Nyflot and Art Chaovalitwongse, as well as the members of the RSNA Quantitative Imaging Biomarkers Alliance and the NCI Quantitative Imaging Network for many helpful discussions.

Compliance with ethical standards


Supported in part by NIH grant U01-CA148131.

This work has received a French government support granted to the CominLabs excellence laboratory and managed by the National Research Agency in the “Investing for the Future” program under reference ANR-10-LABX-07-01. With the support of the National Institute of Cancer (INCa project #C14020NS).

Conflicts of interest

P.E.K. has received a research grant from GE Healthcare and is cofounder of PET/X LLC.

The other authors declare that they have no conflicts of interest.

Supplementary material

259_2016_3427_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1.43 mb)


  1. 1.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21:249–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Willaime JM, Turkheimer FE, Kenny LM, Aboagye EO. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. Phys Med Biol. 2013;58:187–203.PubMedCrossRefGoogle Scholar
  6. 6.
    Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27:683–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:3591–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Asselin MC, O’Connor JP, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48:447–55.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Connor JP, Rose CJ, Jackson A, Watson Y, Cheung S, Maders F, et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer. 2011;105:139–45.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nicolasjilwan M, Hu Y, Yan C, Meerzaman D, Holder CA, Gutman D, et al. Addition of MR imaging features and genetic biomarkers strengthens glioblastoma survival prediction in TCGA patients. J Neuroradiol. 2015;42:212–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoon SH, Park CM, Park SJ, Yoon J-H, Hahn S, Goo JM. Tumor heterogeneity in lung cancer: assessment with dynamic contrast-enhanced MR imaging. Radiology. 2016. doi: 10.1148/radiol.2016151367
  13. 13.
    Michallek F, Dewey M. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol. 2014;24:60–9.PubMedCrossRefGoogle Scholar
  14. 14.
    O’Sullivan F, Roy S, Eary J. A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics. 2003;4:433–48.PubMedCrossRefGoogle Scholar
  15. 15.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gonzalez ME, Dinelle K, Vafai N, Heffernan N, McKenzie J, Appel-Cresswell S, et al. Novel spatial analysis method for PET images using 3D moment invariants: applications to Parkinson’s disease. Neuroimage. 2013;68:11–21.PubMedCrossRefGoogle Scholar
  17. 17.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;13:140–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, Board on Health Care Services, Board on Health Sciences Policy, Institute of Medicine. Evolution of translational omics: lessons learned and the path forward. Micheel CM, Nass SJ, Omenn GS, editors. Washington (DC): National Academies Press (US); 2012.
  20. 20.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.PubMedCrossRefGoogle Scholar
  22. 22.
    Mir AH, Hanmandlu M, Tandon SN. Texture analysis of CT-images for early detection of liver malignancy. Biomed Sci Instrum. 1995;31:213–7.PubMedGoogle Scholar
  23. 23.
    Schad LR, Blüml S, Zuna I. MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging. 1993;11:889–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hatt M, Hanzouli H, Rest CCL, Visvikis D. Comparison of edge-preserving filters for unbiased quantification in 18F-FDG PET imaging. J Nucl Med. 2015;56:1828.CrossRefGoogle Scholar
  27. 27.
    Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng. 2015;17:385–414.PubMedCrossRefGoogle Scholar
  28. 28.
    Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10, e0124165.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dwan K, Gamble C, Williamson PR, Kirkham JJ, Reporting Bias Group. Systematic review of the empirical evidence of study publication bias and outcome reporting bias – an updated review. PLoS One. 2013;8:e66844.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ioannidis JPA. How to make more published research true. PLoS Med. 2014;11, e1001747.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Visvikis D, Hatt M, Tixier F, Rest CLC. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging. 2012;39:1670–2.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Watabe T, Tatsumi M, Watabe H, Isohashi K, Kato H, Yanagawa M, et al. Intratumoral heterogeneity of F-18 FDG uptake differentiates between gastrointestinal stromal tumors and abdominal malignant lymphomas on PET/CT. Ann Nucl Med. 2012;26:222–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim DH, Jung JH, Son SH, Kim CY, Jeong SY, Lee SW, et al. Quantification of intratumoral metabolic macroheterogeneity on 18F-FDG PET/CT and its prognostic significance in pathologic N0 squamous cell lung carcinoma. Clin Nucl Med. 2016;41:e70–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Tixier F, Hatt M, Valla C, Fleury V, Lamour C, Ezzouhri S, et al. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med. 2014;55:1235–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Pyka T, Gempt J, Hiob D, Ringel F, Schlegel J, Bette S, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging. 2016;43:133–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Majdoub M, Visvikis D, Tixier F, Hoeben B, Visser E, Cheze Le Rest C, et al. Proliferative 18F-FLT PET tumor volumes characterization for prediction of locoregional recurrence and disease-free survival in head and neck cancer. Presented at the Society of Nuclear Medicine and Molecular Imaging Annual Meeting. 8–12 June 2013. Vancouver, Canada.Google Scholar
  38. 38.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, et al. Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology. 2014;273:168–74.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wan T, Bloch BN, Plecha D, Thompson CL, Gilmore H, Jaffe C, et al. A radio-genomics approach for identifying high risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores. Sci Rep. 2016;6:21394. doi: 10.1038/srep21394.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tixier F, Groves AM, Goh V, Hatt M, Ingrand P, Le Rest CC, et al. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One. 2014;9, e99567.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tixier F, Hatt M, Rest CCL, Simon B, Key S, Corcos L, et al. Signaling pathways alteration involved in head and neck cancer can be identified through textural features analysis in 18F-FDG PET images: a prospective study. J Nucl Med. 2015;56:449.Google Scholar
  43. 43.
    Klyuzhin IS, Gonzalez M, Shahinfard E, Vafai N, Sossi V. Exploring the use of shape and texture descriptors of positron emission tomography tracer distribution in imaging studies of neurodegenerative disease. J Cereb Blood Flow Metab. 2015. doi: 10.1177/0271678X15606718 PubMedGoogle Scholar
  44. 44.
    Rahmim A, Salimpour Y, Jain S, Blinder SA, Klyuzhin IS, Smith GS, et al. Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin. 2016. doi: 10.1016/j.nicl.2016.02.012 Google Scholar
  45. 45.
    Hatt M, Tixier F, Rest CLC, Visvikis D. Nouveaux indices en TEP/TDM: mythe et réalités. Med Nucl. 2015;39:331–8.Google Scholar
  46. 46.
    Carlier T, Bailly C. State-of-the-art and recent advances in quantification for therapeutic follow-up in oncology using PET. Front Med. 2015;2:18.CrossRefGoogle Scholar
  47. 47.
    Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.PubMedCrossRefGoogle Scholar
  48. 48.
    Rahim MK, Kim SE, So H, Kim HJ, Cheon GJ, Lee ES, et al. Recent trends in PET image interpretations using volumetric and texture-based quantification methods in nuclear oncology. Nucl Med Mol Imaging. 2014;48:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cheng NM, Fang YH, Yen TC. The promise and limits of PET texture analysis. Ann Nucl Med. 2013;27:867–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Bundschuh RA, Dinges J, Neumann L, Seyfried M, Zsótér N, Papp L, et al. Textural parameters of tumor heterogeneity in 18F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer. J Nucl Med. 2014;55:891–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    van Velden FHP, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen AJ, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol. 2016. doi: 10.1007/s11307-016-0940-2
  53. 53.
    Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys. 2015;42:1341–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Fang YH, Lin CY, Shih MJ, Wang HM, Ho TY, Liao CT, et al. Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. Biomed Res Int. 2014;2014:248505.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52:1391–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The precision of textural analysis in (18)F-FDG-PET scans of oesophageal cancer. Eur Radiol. 2015;25:2805–12.PubMedCrossRefGoogle Scholar
  59. 59.
    Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med. 2011;52:1690–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Dong X, Wu P, Sun X, Li W, Wan H, Yu J, et al. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging. J Med Imaging Radiat Oncol. 2015;59:338–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Nelson A, Brockway K, Nelson A, Piper J. PET tumor segmentation: validation of a gradient-based method using a NSCLC PET phantom. J Nucl Med. 2009;50 Suppl 2:1659Google Scholar
  65. 65.
    Hofheinz F, Langner J, Petr J, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med Phys. 2013;40:082503.PubMedCrossRefGoogle Scholar
  66. 66.
    Hatt M, Rest C l C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Brooks FJ, Grigsby PW. Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome. Radiat Oncol. 2011;6:69.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Groheux D, Majdoub M, Tixier F, Le Rest CC, Martineau A, Merlet P, et al. Do clinical, histological or immunohistochemical primary tumour characteristics translate into different (18)F-FDG PET/CT volumetric and heterogeneity features in stage II/III breast cancer? Eur J Nucl Med Mol Imaging. 2015;42:1682–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Brooks FJ, Grigsby PW. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement. Radiat Oncol. 2013;8:294.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14:5236–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Yang F, Thomas MA, Dehdashti F, Grigsby PW. Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging. 2013;40:716–27.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Soussan M, Orlhac F, Boubaya M, Zelek L, Ziol M, Eder V, et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One. 2014;9, e94017.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2:159–71.PubMedCrossRefGoogle Scholar
  74. 74.
    Yan J, Lim JC-S, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.PubMedCrossRefGoogle Scholar
  75. 75.
    Hatt M, Tixier F, Rest CLC, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.PubMedCrossRefGoogle Scholar
  76. 76.
    Brooks FJ, Grigsby PW. The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med. 2014;55:37–42.PubMedCrossRefGoogle Scholar
  77. 77.
    Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mi H, Petitjean C, Dubray B, Vera P, Ruan S. Robust feature selection to predict tumor treatment outcome. Artif Intell Med. 2015;64:195–204.PubMedCrossRefGoogle Scholar
  79. 79.
    Sullivan DC, Obuchowski NA, Kessler LG, Raunig DL, Gatsonis C, Huang EP, et al. Metrology standards for quantitative imaging biomarkers. Radiology. 2015;277:813–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Quantitative Imaging Biomarkers Alliance, FDG-PET/CT Technical Committee. FDG-PET/CT as an imaging biomarker measuring response to cancer therapy, version 1.05. RSNA; 2013.Google Scholar
  81. 81.
    Yip S, McCall K, Aristophanous M, Chen AB, Aerts HJ, Berbeco R. Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS One. 2014;9, e115510.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Oliver JA, Budzevich M, Zhang GG, Dilling TJ, Latifi K, Moros EG. Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol. 2015;8:524–34.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cheng NM, Fang YH, Tsan DL, Hsu CH, Yen TC. Respiration-averaged CT for attenuation correction of PET images – impact on PET texture features in non-small cell lung cancer patients. PLoS One. 2016;11, e0150509.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tixier F, Vriens D, Cheze-Le Rest C, Hatt M, Disselhorst JA, Oyen WJ, et al. Comparison of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl Med. 2016. doi: 10.2967/jnumed.115.166918.Google Scholar
  85. 85.
    Nyflot MJ, Yang F, Byrd D, Bowen SR, Sandison GA, Kinahan PE. Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards. J Med Imaging (Bellingham). 2015;2:041002.CrossRefGoogle Scholar
  86. 86.
    Pyka T, Bundschuh RA, Andratschke N, Mayer B, Specht HM, Papp L, et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. 2015;10:100.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Mu W, Chen Z, Liang Y, Shen W, Yang F, Dai R, et al. Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images. Phys Med Biol. 2015;60:5123–39.PubMedCrossRefGoogle Scholar
  89. 89.
    Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. Intratumor textural heterogeneity on pretreatment (18)F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 2015;22:2746–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheng NM, Fang YH, Chang JT, Huang CG, Tsan DL, Ng SH, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Lovinfosse P, Janvary ZL, Coucke P, Jodogne S, Bernard C, Hatt M, et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging. 2016. doi: 10.1007/s00259-016-3314-8 PubMedGoogle Scholar
  92. 92.
    Yip SS, Coroller TP, Sanford NN, Mamon H, Aerts HJ, Berbeco RI. Relationship between the temporal changes in positron-emission-tomography-imaging-based textural features and pathologic response and survival in esophageal cancer patients. Front Oncol. 2016;6:72.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Cheng N-M, Fang Y-HD, Lee L, Chang JT-C, Tsan D-L, Ng S-H, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2015;42:419–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Xu R, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, et al. Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Ann Nucl Med. 2014;28:926–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo BW, et al. Early-stage non-small cell lung cancer: quantitative imaging characteristics of (18)F Fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology. 2016. doi: 10.1148/radiol.2016151829.Google Scholar
  96. 96.
    Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V, et al. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One. 2015;10, e0137036.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    van Rossum PS, Fried DV, Zhang L, Hofstetter WL, van Vulpen M, Meijer GJ, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer. J Nucl Med. 2016;57:691–700.PubMedCrossRefGoogle Scholar
  98. 98.
    Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol. 2015;84:312–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Desseroit MC, Visvikis D, Tixier F, Majdoub M, Guillevin R, Perdrisot R, et al. Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging. 2016. doi: 10.1007/s00259-016-3325-5.Google Scholar
  100. 100.
    Fried DV, Mawlawi O, Zhang L, Fave X, Zhou S, Ibbott G, et al. Stage III non-small cell lung cancer: prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors. Radiology. 2016;278:214–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Ohri N, Duan F, Snyder BS, Wei B, Machtay M, Alavi A, et al. Pretreatment 18FDG-PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med. 2016. doi: 10.2967/jnumed.115.166934.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Hyun SH, Kim HS, Choi SH, Choi DW, Lee JK, Lee KH, et al. Intratumoral heterogeneity of 18F-FDG uptake predicts survival in patients with pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging. 2016. doi: 10.1007/s00259-016-3316-6 Google Scholar
  103. 103.
    Lartizien C, Rogez M, Niaf E, Ricard F. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform. 2014;18:946–55.PubMedCrossRefGoogle Scholar
  104. 104.
    Bang JI, Ha S, Kang SB, Lee KW, Lee HS, Kim JS, et al. Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [(18)F]FDG PET/CT scans in locally advanced rectal cancer. Eur J Nucl Med Mol Imaging. 2016:43:422–31.Google Scholar
  105. 105.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–45.PubMedCrossRefGoogle Scholar
  106. 106.
    Antunes J, Viswanath S, Rusu M, Valls L, Hoimes C, Avril N, et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol. 2016;9:155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang HM, Cheng NM, Lee LY, Fang YH, Chang JT, Tsan DL, et al. Heterogeneity of (18) F-FDG PET combined with expression of EGFR may improve the prognostic stratification of advanced oropharyngeal carcinoma. Int J Cancer. 2016;138:731–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJ. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol. 2015;5:272.Google Scholar
  109. 109.
    Yoon HJ, Sohn I, Cho JH, Lee HY, Kim JH, Choi YL, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach. Medicine (Baltimore). 2015;94, e1753.CrossRefGoogle Scholar
  110. 110.
    Upadhaya T, Morvan Y, Stindel E, Le Reste PJ, Hatt M. A framework for multimodal imaging-based prognostic model building: preliminary study on multimodal MRI in glioblastoma multiforme. IRBM, 2015;36:345–50.CrossRefGoogle Scholar
  111. 111.
    Wang J, Kato F, Oyama-Manabe N, Li R, Cui Y, Tha KK, et al. Identifying triple-negative breast cancer using background parenchymal enhancement heterogeneity on dynamic contrast-enhanced MRI: a pilot radiomics study. PLoS One. 2015;10, e0143308.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cameron A, Khalvati F, Haider M, Wong A. MAPS: a quantitative radiomics approach for prostate cancer detection. IEEE Trans Biomed Eng. 2016;63:1145–56.Google Scholar
  113. 113.
    Khalvati F, Wong A, Haider MA. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. BMC Med Imaging. 2015;15:27.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sharma RR, Marikkannu P. Hybrid RGSA and support vector machine framework for three-dimensional magnetic resonance brain tumor classification. ScientificWorldJournal. 2015;2015, 184350.PubMedGoogle Scholar
  115. 115.
    Pandis N, Fedorowicz Z. The international EQUATOR network: enhancing the quality and transparency of health care research. J Appl Oral Sci. 2011. doi: 10.1590/S1678-77572011000500001.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mathieu Hatt
    • 1
    Email author
  • Florent Tixier
    • 2
    • 3
  • Larry Pierce
    • 4
  • Paul E. Kinahan
    • 4
  • Catherine Cheze Le Rest
    • 2
    • 3
  • Dimitris Visvikis
    • 1
  1. 1.INSERM, UMR 1101, LaTIMUniversity of Brest IBSAMBrestFrance
  2. 2.Nuclear MedicineUniversity HospitalPoitiersFrance
  3. 3.Medical school, EE DACTIMUniversity of PoitiersPoitiersFrance
  4. 4.Imaging Research LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations