Advertisement

Ruptured human Achilles tendon has elevated metabolic activity up to 1 year after repair

  • Pernilla EliassonEmail author
  • Christian Couppé
  • Markus Lonsdale
  • René B. Svensson
  • Christian Neergaard
  • Michael Kjær
  • Lars Friberg
  • S. Peter Magnusson
Original Article

Abstract

Purpose

Following Achilles tendon rupture, running is often allowed after 6 months. However, tendon healing is slow and the metabolic status of the tendon at this point is unknown. The purpose of this study was to investigate tendon metabolism (glucose uptake) and vascularization at 3, 6 and 12 months after Achilles tendon rupture as measured using PET and power Doppler ultrasonography (PDUS).

Methods

The study group comprised 23 patients with surgically repaired Achilles tendon rupture who were investigated at 3 months (n = 7), 6 months (n = 7) and 12 months (n = 9) after surgery. The triceps surae complex was loaded over 20 min of slow treadmill walking while a radioactive tracer (18F-FDG) was administered prior to PET. Vascularization was measured in terms of PDUS flow activity, and patient-reported outcomes were scored using the Achilles tendon rupture score (ATRS) and sports assessment (VISA-A) questionnaire.

Results

Relative glucose uptake (18F-FDG) was higher in repaired tendons than in intact tendons at all time-points (6, 3 and 1.6 times higher at 3, 6 and 12 months, respectively; P ≤ 0.001), and was also higher in the tendon core than in the periphery at 3 and 6 months (P ≤ 0.02), but lower at 12 months (P = 0.06). Relative glucose uptake was negatively related to ATRS at 6 months after repair (r = −0.89, P ≤ 0.01). PDUS flow activity was higher in repaired tendons than in intact tendons at 3 and 6 months (P < 0.05 for both), but had normalized by 12 months.

Conclusion

These data demonstrate that the healing process as determined by metabolic activity and vascularization continues for 6 months after injury when large loads are typically allowed on the tendon. Indeed, metabolic activity remained elevated for more than 1 year after injury despite normalized vascularization. The robust negative correlation between tendon metabolism and patient-reported outcome suggests that a high metabolic activity 6 months after the injury may be related to a poor clinical healing outcome.

Keywords

Healing Power Doppler ultrasonography 18F-FDG Positron emission tomography Loading ATRS 

Notes

Acknowledgments

We thank specialist technologist Eva Brødsgaard for excellent help with the PET procedures.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Funding

This study was supported by the Center of Healthy Aging, Danish Association of Rheumatism, IOC Sports Medicine Copenhagen, the Danish Medical Research Council and the Swedish Society for Medical Research.

Ethical approval

The study was approved by the local ethics committee for experimental procedures (H-3-2012-060) and was performed according to the principles of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from the patients.

References

  1. 1.
    Mortensen HM, Skov O, Jensen PE. Early motion of the ankle after operative treatment of a rupture of the Achilles tendon. A prospective, randomized clinical and radiographic study. J Bone Joint Surg Am. 1999;81:983–90.PubMedGoogle Scholar
  2. 2.
    Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.PubMedGoogle Scholar
  3. 3.
    Maffulli N, Tallon C, Wong J, Lim KP, Bleakney R. Early weightbearing and ankle mobilization after open repair of acute midsubstance tears of the Achilles tendon. Am J Sports Med. 2003;31:692–700.PubMedGoogle Scholar
  4. 4.
    Hutchison AM, Topliss C, Beard D, Evans RM, Williams P. The treatment of a rupture of the Achilles tendon using a dedicated management programme. Bone Joint J. 2015;97-B:510–5. doi: 10.1302/0301-620X.97B4.35314.CrossRefPubMedGoogle Scholar
  5. 5.
    Ohberg L, Lorentzon R, Alfredson H. Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg Sports Traumatol Arthrosc. 2001;9:233–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Teefey SA, Middleton WD, Bauer GS, Hildebolt CF, Yamaguchi K. Sonographic differences in the appearance of acute and chronic full-thickness rotator cuff tears. J Ultrasound Med. 2000;19:377–8. quiz 83.PubMedGoogle Scholar
  7. 7.
    Karjalainen PT, Ahovuo J, Pihlajamaki HK, Soila K, Aronen HJ. Postoperative MR imaging and ultrasonography of surgically repaired Achilles tendon ruptures. Acta Radiol. 1996;37:639–46.CrossRefPubMedGoogle Scholar
  8. 8.
    Moller M, Kalebo P, Tidebrant G, Movin T, Karlsson J. The ultrasonographic appearance of the ruptured Achilles tendon during healing: a longitudinal evaluation of surgical and nonsurgical treatment, with comparisons to MRI appearance. Knee Surg Sports Traumatol Arthrosc. 2002;10:49–56. doi: 10.1007/s001670100245.CrossRefPubMedGoogle Scholar
  9. 9.
    Rominger MB, Bachmann G, Schulte S, Zedler A. Value of ultrasound and magnetic resonance imaging in the control of the postoperative progress after Achilles tendon rupture. Rofo. 1998;168:27–35. doi: 10.1055/s-2007-1015178.CrossRefPubMedGoogle Scholar
  10. 10.
    Rubin JM, Bude RO, Carson PL, Bree RL, Adler RS. Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology. 1994;190:853–6. doi: 10.1148/radiology.190.3.8115639.CrossRefPubMedGoogle Scholar
  11. 11.
    Fealy S, Adler RS, Drakos MC, Kelly AM, Allen AA, Cordasco FA, et al. Patterns of vascular and anatomical response after rotator cuff repair. Am J Sports Med. 2006;34:120–7. doi: 10.1177/0363546505280212.CrossRefPubMedGoogle Scholar
  12. 12.
    Mittra E, Quon A. Positron emission tomography/computed tomography: the current technology and applications. Radiol Clin N Am. 2009;47:147–60. doi: 10.1016/j.rcl.2008.10.005.CrossRefPubMedGoogle Scholar
  13. 13.
    Hannukainen J, Kalliokoski KK, Nuutila P, Fujimoto T, Kemppainen J, Viljanen T, et al. In vivo measurements of glucose uptake in human Achilles tendon during different exercise intensities. Int J Sports Med. 2005;26:727–31. doi: 10.1055/s-2005-837458.CrossRefPubMedGoogle Scholar
  14. 14.
    Kalliokoski KK, Bojsen-Moller J, Seppanen M, Johansson J, Kjaer M, Teras M, et al. Contraction-induced [18F]-fluoro-deoxy-glucose uptake can be measured in human calf muscle using high-resolution PET. Clin Physiol Funct Imaging. 2007;27:239–41. doi: 10.1111/j.1475-097X.2007.00744.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP. Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol. 2006;101:196–201. doi: 10.1152/japplphysiol.00004.2006.CrossRefPubMedGoogle Scholar
  16. 16.
    Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200. doi: 10.1007/s00259-009-1297-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Karjalainen PT, Aronen HJ, Pihlajamaki HK, Soila K, Paavonen T, Bostman OM. Magnetic resonance imaging during healing of surgically repaired Achilles tendon ruptures. Am J Sports Med. 1997;25:164–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Rupp S, Tempelhof S, Fritsch E. Ultrasound of the Achilles tendon after surgical repair: morphology and function. Br J Radiol. 1995;68:454–8. doi: 10.1259/0007-1285-68-809-454.CrossRefPubMedGoogle Scholar
  19. 19.
    Schepull T, Aspenberg P. Early controlled tension improves the material properties of healing human Achilles tendons after ruptures: a randomized trial. Am J Sports Med. 2013;41:2550–7. doi: 10.1177/0363546513501785.CrossRefPubMedGoogle Scholar
  20. 20.
    Schepull T, Aspenberg P. Healing of human Achilles tendon ruptures: radiodensity reflects mechanical properties. Knee Surg Sports Traumatol Arthrosc. 2015;23:884–9. doi: 10.1007/s00167-013-2720-8.CrossRefPubMedGoogle Scholar
  21. 21.
    Sasaki K, Yamamoto N, Kiyosawa T, Sekido M. The role of collagen arrangement change during tendon healing demonstrated by scanning electron microscopy. J Electron Microsc. 2012;61:327–34. doi: 10.1093/jmicro/dfs057.CrossRefGoogle Scholar
  22. 22.
    Gumucio JP, Phan AC, Ruehlmann DG, Noah AC, Mendias CL. Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix. J Appl Physiol. 2014;117:1287–91. doi: 10.1152/japplphysiol.00720.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Finni T, Hodgson JA, Lai AM, Edgerton VR, Sinha S. Muscle synergism during isometric plantarflexion in Achilles tendon rupture patients and in normal subjects revealed by velocity-encoded cine phase-contrast MRI. Clin Biomech. 2006;21:67–74. doi: 10.1016/j.clinbiomech.2005.08.007.CrossRefGoogle Scholar
  24. 24.
    Suydam SM, Buchanan TS, Manal K, Silbernagel KG. Compensatory muscle activation caused by tendon lengthening post-Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc. 2015;23:868–74. doi: 10.1007/s00167-013-2512-1.CrossRefPubMedGoogle Scholar
  25. 25.
    Weinberg EP, Adams MJ, Hollenberg GM. Color Doppler sonography of patellar tendinosis. AJR Am J Roentgenol. 1998;171:743–4. doi: 10.2214/ajr.171.3.9725308.CrossRefPubMedGoogle Scholar
  26. 26.
    Gisslen K, Alfredson H. Neovascularisation and pain in jumper’s knee: a prospective clinical and sonographic study in elite junior volleyball players. Br J Sports Med. 2005;39:423–8. doi: 10.1136/bjsm.2004.013342. discussion 423−8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peltoniemi P, Lonnroth P, Laine H, Oikonen V, Tolvanen T, Gronroos T, et al. Lumped constant for [(18)F] fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am J Physiol Endocrinol Metab. 2000;279:E1122–30.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pernilla Eliasson
    • 1
    Email author
  • Christian Couppé
    • 1
    • 2
    • 5
  • Markus Lonsdale
    • 3
  • René B. Svensson
    • 1
    • 2
  • Christian Neergaard
    • 4
  • Michael Kjær
    • 1
    • 2
  • Lars Friberg
    • 3
  • S. Peter Magnusson
    • 1
    • 2
    • 5
  1. 1.Institute of Sports Medicine Copenhagen, Department of Ortopaedic Surgery, Bispebjerg HospitalUniversity Hospital of CopenhagenCopenhagen NVDenmark
  2. 2.Center for Healthy Aging, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Clinical Physiology and Nuclear Medicine, Bispebjerg HospitalUniversity Hospital of CopenhagenCopenhagenDenmark
  4. 4.Metropol, School of PhysiotherapyCopenhagenDenmark
  5. 5.Musculoskeletal Rehabilitation Research Unit, Bispebjerg HospitalUniversity Hospital of CopenhagenCopenhagenDenmark

Personalised recommendations