Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

  • Silvia Morbelli
  • Michela Ferrara
  • Francesco Fiz
  • Barbara Dessi
  • Dario Arnaldi
  • Agnese Picco
  • Irene Bossert
  • Ambra Buschiazzo
  • Jennifer Accardo
  • Lorena Picori
  • Nicola Girtler
  • Paola Mandich
  • Marco Pagani
  • Gianmario Sambuceti
  • Flavio Nobili
Original Article

Abstract

Purpose

The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available.

Methods

We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD−).

Results

Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD− patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule.

Conclusion

These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials.

Keywords

Frontotemporal dementia Brain PET Mild cognitive impairment 

References

  1. 1.
    Perry DC, Miller BL. Frontotemporal dementia. Semin Neurol. 2013;33:336–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Seltman RE, Matthews BR. Frontotemporal lobar degeneration: epidemiology, pathology, diagnosis and management. CNS Drugs. 2012;26:841–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.Google Scholar
  4. 4.
    de Mendonça A, Ribeiro F, Guerreiro M, Garcia C. Frontotemporal mild cognitive impairment. J Alzheimers Dis. 2004;6:1–9.PubMedGoogle Scholar
  5. 5.
    Snowden JS, Bathgate D, Varma A, Blackshaw A, Gibbons ZC, Neary D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry. 2001;70:323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Le Ber I, Guedj E, Gabelle A, Verpillat P, Volteau M, Thomas-Anterion C, et al. Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain. 2006;129:3051–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Taragano FE, Allegri RF, Krupitzki H, Sarasola DR, Serrano CM, Loñ L, et al. Mild behavioral impairment and risk of dementia: a prospective cohort study of 358 patients. J Clin Psychiatry. 2009;70:584–92.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Whitwell JL, Josephs KA. Neuroimaging in frontotemporal lobar degeneration – predicting molecular pathology. Nat Rev Neurol. 2012;8:131–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Whitwell JL, Jack Jr CR, Parisi JE, Knopman DS, Boeve BF, Petersen RC, et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci. 2011;45:372–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schroeter ML, Vogt B, Frisch S, Becker G, Seese A, Barthel H, et al. Dissociating behavioral disorders in early dementia – an FDG-PET study. Psychiatry Res. 2011;194:235–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Raczka KA, Becker G, Seese A, Frisch S, Heiner S, Marschhauser A, et al. Executive and behavioral deficits share common neural substrates in frontotemporal lobar degeneration – a pilot FDG-PET study. Psychiatry Res. 2010;182:274–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Mendez MF, McMurtray A, Chen AK, Shapira JS, Mishkin F, Miller BL. Functional neuroimaging and presenting psychiatric features in frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2006;77:4–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chiu WZ, Papma JM, de Koning I, Donker Kaat L, Seelaar H, Reijs AE, et al. Midcingulate involvement in progressive supranuclear palsy and tau positive frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2012;83:910–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Woost TB, Dukart J, Frisch S, Barthel H, Sabri O, Mueller K, et al. Neural correlates of the DemTect in Alzheimer’s disease and frontotemporal lobar degeneration – a combined MRI & FDG-PET study. Neuroimage Clin. 2013;2:746–58.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jacova C, Hsiung GY, Tawankanjanachot I, Dinelle K, McCormick S, Gonzalez M, et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology. 2013;81:1322–31.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kerklaan BJ, van Berckel BN, Herholz K, Dols A, van der Flier WM, Scheltens P, et al. The added value of 18-fluorodeoxyglucose- positron emission tomography in the diagnosis of the behavioral variant of frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2014;29:607–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49:390–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Krudop WA, Kerssens CJ, Dols A, Prins ND, Möller C, Schouws S, et al. Identifying bvFTD within the wide spectrum of late onset frontal lobe syndrome: a clinical approach. Am J Geriatr Psychiatry. 2015;23:1056–66. doi:10.1016/j.jagp.2015.04.002.CrossRefPubMedGoogle Scholar
  20. 20.
    Magistretti PJ. Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res. 2000;886:108–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Origone P, Accardo J, Verdiani S, Lamp M, Arnaldi D, Bellone E, et al. Neuroimaging features in C9orf72 and TARDBP double mutation with FTD phenotype. Neurocase. 2015;21:529–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Morbelli S, Drzezga A, Perneczky R, Frisoni GB, Caroli A, van Berckel BN, et al. Resting metabolic connectivity in prodromal Alzheimer’s disease. A European Alzheimer Disease Consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14:21–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deters KD, Risacher SL, Farlow MR, Unverzagt FW, Kareken DA, Hutchins GD, et al. Cerebral hypometabolism and grey matter density in MAPT intron 10 +3 mutation carriers. Am J Neurodegener Dis. 2014;3:103–14.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dukart J, Mueller K, Horstmann A, Barthel H, Möller HE, Villringer A, et al. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One. 2011;6:e18111.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rajagopalan V, Pioro EP. Comparing brain structural MRI and metabolic FDG-PET changes in patients with ALS-FTD: ‘the chicken or the egg?’ question. J Neurol Neurosurg Psychiatry. 2015;86:952–8. doi:10.1136/jnnp-2014-308239.CrossRefPubMedGoogle Scholar
  32. 32.
    Rabinovici GD, Boeve BF. Imaging prodromal FTD: seeing the future through PET crystals. Neurology. 2013;81:1282–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Kipps CM, Hodges JR, Fryer TD, Nestor PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain. 2009;132:2566–78.CrossRefPubMedGoogle Scholar
  34. 34.
    Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord. 2007;23:334–42.CrossRefPubMedGoogle Scholar
  36. 36.
    Caroli A, Lorenzi M, Geroldi C, Nobili F, Paghera B, Bonetti M, et al. Metabolic compensation and depression in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2010;29:37–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Ye BS, Choi SH, Han SH, Kim S, Yang DW, Park KH, et al. Clinical and neuropsychological comparisons of early-onset versus late-onset frontotemporal dementia: a CREDOS-FTD study. J Alzheimers Dis. 2015;45:599–608.PubMedGoogle Scholar
  38. 38.
    Passant U, Rosén I, Gustafson L, Englund E. The heterogeneity of frontotemporal dementia with regard to initial symptoms, qEEG and neuropathology. Int J Geriatr Psychiatry. 2005;20:983–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Nobili F, Campus C, Arnaldi D, De Carli F, Cabassi G, Brugnolo A, et al. Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov Disord. 2010;25:35–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Zamboni G, Huey ED, Krueger F, Nichelli PF, Grafman J. Apathy and disinhibition in frontotemporal dementia: insights into their neural correlates. Neurology. 2008;71:736–42.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rosen HJ, Perry RJ, Murphy J, Kramer JH, Mychack P, Schuff N, et al. Emotion comprehension in the temporal variant of frontotemporal dementia. Brain. 2002;125:2286–95.CrossRefPubMedGoogle Scholar
  42. 42.
    Morgane PJ, Galler JR, Mokler DJ. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol. 2005;75:143–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Links KA, Chow TW, Binns M, Freedman M, Stuss DT, Scott CJ, et al. Apathy is not associated with basal ganglia atrophy in frontotemporal dementia. Am J Geriatr Psychiatry. 2009;17:819–21.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Paulus MP, Stein MB. An insular view of anxiety. Biol Psychiatry. 2006;60:383–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131:2957–68.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Silvia Morbelli
    • 1
  • Michela Ferrara
    • 2
  • Francesco Fiz
    • 1
  • Barbara Dessi
    • 2
  • Dario Arnaldi
    • 2
  • Agnese Picco
    • 2
  • Irene Bossert
    • 1
  • Ambra Buschiazzo
    • 1
  • Jennifer Accardo
    • 2
  • Lorena Picori
    • 1
  • Nicola Girtler
    • 2
    • 3
  • Paola Mandich
    • 4
  • Marco Pagani
    • 5
    • 6
  • Gianmario Sambuceti
    • 1
  • Flavio Nobili
    • 2
  1. 1.Nuclear Medicine Unit, Department of Health Science (DISSAL)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  2. 2.Clinical Neurology, Department of Neuroscience (DINOGMI)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  3. 3.Clinical Psychology, Department of Neuroscience (DINOGMI)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  4. 4.Medical Genetics, Department of Neuroscience (DINOGMI)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  5. 5.Institute of Cognitive Sciences and Technologies, CNRRomeItaly
  6. 6.Department of Nuclear MedicineKarolinska HospitalStockholmSweden

Personalised recommendations