Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I–III

  • Marie-Charlotte Desseroit
  • Dimitris Visvikis
  • Florent Tixier
  • Mohamed Majdoub
  • Rémy Perdrisot
  • Rémy Guillevin
  • Catherine Cheze Le Rest
  • Mathieu Hatt
Original Article

Abstract

Purpose

Our goal was to develop a nomogram by exploiting intratumour heterogeneity on CT and PET images from routine 18F-FDG PET/CT acquisitions to identify patients with the poorest prognosis.

Methods

This retrospective study included 116 patients with NSCLC stage I, II or III and with staging 18F-FDG PET/CT imaging. Primary tumour volumes were delineated using the FLAB algorithm and 3D Slicer™ on PET and CT images, respectively. PET and CT heterogeneities were quantified using texture analysis. The reproducibility of the CT features was assessed on a separate test–retest dataset. The stratification power of the PET/CT features was evaluated using the Kaplan-Meier method and the log-rank test. The best standard metric (functional volume) was combined with the least redundant and most prognostic PET/CT heterogeneity features to build the nomogram.

Results

PET entropy and CT zone percentage had the highest complementary values with clinical stage and functional volume. The nomogram improved stratification amongst patients with stage II and III disease, allowing identification of patients with the poorest prognosis (clinical stage III, large tumour volume, high PET heterogeneity and low CT heterogeneity).

Conclusion

Intratumour heterogeneity quantified using textural features on both CT and PET images from routine staging 18F-FDG PET/CT acquisitions can be used to create a nomogram with higher stratification power than staging alone.

Keywords

PET/CT Textural features Heterogeneity Prognosis NSCLC 

Supplementary material

259_2016_3325_MOESM1_ESM.docx (507 kb)
Figure 1The workflow of the nomogram construction. (DOCX 506 kb)
259_2016_3325_MOESM2_ESM.docx (317 kb)
Figure 2The Kaplan-Meier curves obtained for stratification with (a) stage and MATV (b) stage, MATV and PET heterogeneity and (c) stage, MATV and CT heterogeneity. (DOCX 317 kb)
259_2016_3325_MOESM3_ESM.docx (317 kb)
ESM 1(DOCX 317 kb)
259_2016_3325_MOESM4_ESM.docx (314 kb)
ESM 2(DOCX 313 kb)
259_2016_3325_MOESM5_ESM.docx (305 kb)
Figure 3Distribution of co-occurrence entropy from FDG PET and zone percentage from attenuation CT for stage II and III patients. (DOCX 305 kb)
259_2016_3325_MOESM6_ESM.docx (353 kb)
Figure 4Nomogram result excluding the 14 patients treated with palliative chemotherapy only (N=102). (DOCX 353 kb)
259_2016_3325_MOESM7_ESM.docx (56 kb)
Figure 5Distributions of (a) FDG PET entropy and (b) CT zone percentage according to N staging in stage II and III patients. (DOCX 55 kb)
259_2016_3325_MOESM8_ESM.docx (56 kb)
ESM 3(DOCX 56 kb)
259_2016_3325_MOESM9_ESM.docx (37 kb)
Supplemental table 1(DOCX 36 kb)

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Sauter AW, Schwenzer N, Divine MR, Pichler BJ, Pfannenberg C. Image-derived biomarkers and multimodal imaging strategies for lung cancer management. Eur J Nucl Med Mol Imaging. 2015;42:634–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Tixier F, Hatt M, Valla C, Fleury V, Lamour C, Ezzouhri S, et al. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med. 2014;55:1235–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.CrossRefPubMedGoogle Scholar
  6. 6.
    Cook GJ, O’Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET – association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Pyka T, Bundschuh RA, Andratschke N, Mayer B, Specht HM, Papp L, et al. Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy. Radiat Oncol. 2015;10:100.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, et al. Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:3591–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266:326–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Fried DV, Tucker SL, Zhou S, Liao Z, Mawlawi O, Ibbott G, et al. Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90:834–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Imaging JA, et al. Role in therapy response, resistance, and clinical outcome. Clin Cancer Res. 2015;21:249–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;13:140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–45.CrossRefPubMedGoogle Scholar
  15. 15.
    Grove O, Berglund AE, Schabath MB, Aerts HJWL, Dekker A, Wang H, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One. 2015;10:e0118261.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28:881–93.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D. PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging. 2011;38:663–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Arens AI, Troost EG, Hoeben BA, Grootjans W, Lee JA, Grégoire V, et al. Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging. 2014;41:915–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Heijmen L, de Geus-Oei LF, de Wilt JH, Visvikis D, Hatt M, Visser EP, et al. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer. Eur J Nucl Med Mol Imaging. 2012;39:1858–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Parmar C, Rios Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One. 2014;9:e102107.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hunter LA, Krafft S, Stingo F, Choi H, Martel MK, Kry SF, et al. High quality machine-robust image features: identification in nonsmall cell lung cancer computed tomography images. Med Phys. 2013;40:121916.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hatt M, Tixier F, Cheze Le Rest C, Pradier O, Visvikis D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:1662–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Armato 3rd SG, Meyer CR, Mcnitt-Gray MF, McLennan G, Reeves AP, Croft BY, et al. The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the development of change-analysis software. Clin Pharmacol Ther. 2008;84:448–56.CrossRefPubMedGoogle Scholar
  26. 26.
    Dancey CP, Reidy J. Statistics without maths for psychology. 5th ed. Harlow: Prentice Hall; 2011.Google Scholar
  27. 27.
    Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.Google Scholar
  29. 29.
    Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3’-deoxy-3’-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.CrossRefPubMedGoogle Scholar
  30. 30.
    Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6:3837–44.PubMedGoogle Scholar
  31. 31.
    Kunkel M, Reichert TE, Benz P, Lehr H-A, Jeong J-H, Wieand S, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer. 2003;97:1015–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Tixier F, Groves AM, Goh V, Hatt M, Ingrand P, Le Rest CC, et al. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer. PLoS One. 2014;9:e99567.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging. 2003;30:695–704.CrossRefPubMedGoogle Scholar
  34. 34.
    Ikehara M, Saito H, Yamada K, Oshita F, Noda K, Nakayama H, et al. Prognosis of small adenocarcinoma of the lung based on thin-section computed tomography and pathological preparations. J Comput Assist Tomogr. 2008;32:426–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22:796–802.CrossRefPubMedGoogle Scholar
  36. 36.
    Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Yip S, McCall K, Aristophanous M, Chen AB, Aerts HJ, Berbeco R. Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS One. 2014;9:e115510.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep. 2015;5:13087.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marie-Charlotte Desseroit
    • 1
    • 2
  • Dimitris Visvikis
    • 2
  • Florent Tixier
    • 1
    • 3
  • Mohamed Majdoub
    • 2
  • Rémy Perdrisot
    • 1
    • 3
  • Rémy Guillevin
    • 3
    • 4
  • Catherine Cheze Le Rest
    • 1
    • 3
  • Mathieu Hatt
    • 2
  1. 1.Nuclear MedicineUniversity HospitalPoitiersFrance
  2. 2.INSERM, UMR 1101, LaTIM, CHRU Morvan, University of BrestBrestFrance
  3. 3.Medical school, EE DACTIMUniversity of PoitiersPoitiersFrance
  4. 4.RadiologyUniversity hospitalPoitiersFrance

Personalised recommendations