Advertisement

18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors

  • Takuya Toyonaga
  • Kenji Hirata
  • Shigeru Yamaguchi
  • Kanako C. Hatanaka
  • Sayaka Yuzawa
  • Osamu Manabe
  • Kentaro Kobayashi
  • Shiro Watanabe
  • Tohru Shiga
  • Shunsuke Terasaka
  • Hiroyuki Kobayashi
  • Yuji Kuge
  • Nagara Tamaki
Original Article

Abstract

Purpose

Tumor necrosis is one of the indicators of tumor aggressiveness. 18F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake.

Methods

This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR).

Results

In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively.

Conclusions

FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.

Keywords

Necrosis FMISO PET Hypoxia Brain tumor Biopsy Histology 

Notes

Acknowledgments

The authors thank the staff at the Departments of Nuclear Medicine, Molecular Imaging, Radiology, Neurosurgery, and Cancer Pathology of Hokkaido University Graduate School of Medicine, and Department of Surgical Pathology of Hokkaido University Hospital.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Moradi A, Semnani V, Djam H, Tajodini A, Zali AR, Ghaemi K, et al. Pathodiagnostic parameters for meningioma grading. J Clin Neurosci: Off J Neurosurg Soc Aust. 2008;15(12):1370–5. doi: 10.1016/j.jocn.2007.12.005.CrossRefGoogle Scholar
  2. 2.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi: 10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Miller CR, Dunham CP, Scheithauer BW, Perry A. Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24(34):5419–26. doi: 10.1200/JCO.2006.08.1497.CrossRefGoogle Scholar
  4. 4.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8. doi: 10.3171/jns.2001.95.2.0190.CrossRefPubMedGoogle Scholar
  5. 5.
    Urtasun R, Band P, Chapman JD, Feldstein ML, Mielke B, Fryer C. Radiation and high-dose metronidazole in supratentorial glioblastomas. N Engl J Med. 1976;294(25):1364–7. doi: 10.1056/NEJM197606172942503.CrossRefPubMedGoogle Scholar
  6. 6.
    Dische S. Chemical sensitizers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 1985;3(2):97–115.CrossRefGoogle Scholar
  7. 7.
    Van Os-Corby DJ, Koch CJ, Chapman JD. Is misonidazole binding to mouse tissues a measure of cellular pO2? Biochem Pharmacol. 1987;36(20):3487–94.CrossRefPubMedGoogle Scholar
  8. 8.
    Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z. Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res. 1990;122(3):301–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Kavanagh MC, Sun A, Hu Q, Hill RP. Comparing techniques of measuring tumor hypoxia in different murine tumors: Eppendorf pO2 Histograph, [3H]misonidazole binding and paired survival assay. Radiat Res. 1996;145(4):491–500.CrossRefPubMedGoogle Scholar
  10. 10.
    Piert M, Machulla H, Becker G, Stahlschmidt A, Patt M, Aldinger P, et al. Introducing fluorine-18 fluoromisonidazole positron emission tomography for the localisation and quantification of pig liver hypoxia. Eur J Nucl Med. 1999;26(2):95–109.CrossRefPubMedGoogle Scholar
  11. 11.
    Piert M, Machulla HJ, Becker G, Aldinger P, Winter E, Bares R. Dependency of the [18F]fluoromisonidazole uptake on oxygen delivery and tissue oxygenation in the porcine liver. Nucl Med Biol. 2000;27(8):693–700.CrossRefPubMedGoogle Scholar
  12. 12.
    Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol. 2002;41(3):304–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70. doi: 10.1007/s00259-011-2037-0.CrossRefPubMedGoogle Scholar
  14. 14.
    Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med: Off Publ Soc Nucl Med. 1987;28(1):68–75.Google Scholar
  15. 15.
    Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50(10):2209–24. doi: 10.1088/0031-9155/50/10/002.CrossRefPubMedGoogle Scholar
  16. 16.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med: Off Publ Soc Nucl Med. 2009;50 Suppl 1:122S–50. doi: 10.2967/jnumed.108.057307.CrossRefGoogle Scholar
  17. 17.
    Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, et al. Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging. 2015;42(7):1071–80. doi: 10.1007/s00259-015-3046-1.CrossRefPubMedGoogle Scholar
  18. 18.
    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma. 2011;12:77. doi: 10.1186/1471-2105-12-77.CrossRefGoogle Scholar
  19. 19.
    Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med. 2007;37(6):451–61. doi: 10.1053/j.semnuclmed.2007.07.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Bell C, Dowson N, Fay M, Thomas P, Puttick S, Gal Y, et al. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med. 2015;45(2):136–50. doi: 10.1053/j.semnuclmed.2014.10.001.CrossRefPubMedGoogle Scholar
  21. 21.
    Jenkins WT, Evans SM, Koch CJ. Hypoxia and necrosis in rat 9L glioma and Morris 7777 hepatoma tumors: comparative measurements using EF5 binding and the Eppendorf needle electrode. Int J Radiat Oncol Biol Phys. 2000;46(4):1005–17.CrossRefPubMedGoogle Scholar
  22. 22.
    Yamaguchi S, Terasaka S, Kobayashi H, Asaoka K, Motegi H, Nishihara H, et al. Prognostic factors for survival in patients with high-grade meningioma and recurrence-risk stratification for application of radiotherapy. PLoS One. 2014;9(5), e97108. doi: 10.1371/journal.pone.0097108.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord Jr EC, et al. Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by MRI with hypoxia assessed by FMISO-PET in newly diagnosed glioblastomas. Cancer Res. 2009;69(10):4502–9. doi: 10.1158/0008-5472.CAN-08-3884.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(9):2623–30. doi: 10.1158/1078-0432.CCR-07-4995.CrossRefGoogle Scholar
  25. 25.
    Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med: Off Publ Soc Nucl Med. 2009;50(1):36–44. doi: 10.2967/jnumed.108.055467.CrossRefGoogle Scholar
  26. 26.
    Kawai N, Lin W, Cao WD, Ogawa D, Miyake K, Haba R, et al. Correlation between 18F-fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging. 2014;41(10):1870–8. doi: 10.1007/s00259-014-2776-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med: Off Publ Soc Nucl Med. 2013;54(2):201–7. doi: 10.2967/jnumed.112.109330.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Takuya Toyonaga
    • 1
  • Kenji Hirata
    • 1
  • Shigeru Yamaguchi
    • 1
    • 2
  • Kanako C. Hatanaka
    • 3
  • Sayaka Yuzawa
    • 4
  • Osamu Manabe
    • 1
  • Kentaro Kobayashi
    • 1
  • Shiro Watanabe
    • 1
  • Tohru Shiga
    • 1
  • Shunsuke Terasaka
    • 2
  • Hiroyuki Kobayashi
    • 2
  • Yuji Kuge
    • 5
  • Nagara Tamaki
    • 1
  1. 1.Department of Nuclear Medicine, Graduate School of MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Neurosurgery, Graduate School of MedicineHokkaido UniversitySapporoJapan
  3. 3.Department of Surgical PathologyHokkaido University HospitalSapporoJapan
  4. 4.Department of Cancer Pathology, Graduate School of MedicineHokkaido UniversitySapporoJapan
  5. 5.Central Institute of Isotope ScienceHokkaido UniversitySapporoJapan

Personalised recommendations