Central serotonin transporter availability in highly obese individuals compared with non-obese controls: A [11C] DASB positron emission tomography study

  • Swen Hesse
  • Michael Rullmann
  • Julia Luthardt
  • Karsten Winter
  • Mohammed K. Hankir
  • Georg-Alexander Becker
  • Franziska Zientek
  • Georg Reissig
  • Ralf Regenthal
  • Mandy Drabe
  • Christian Schinke
  • Anke Bresch
  • Katrin Arelin
  • Donald Lobsien
  • Marianne Patt
  • Philipp M. Meyer
  • Mathias Fasshauer
  • Wiebke K. Fenske
  • Matthias Blüher
  • Michael Stumvoll
  • Osama Sabri
Original Article

Abstract

Purpose

The role of the central serotonin (5-hydroxytryptamine, 5-HT) system in feeding has been extensively studied in animals with the 5-HT family of transporters (5-HTT) being identified as key molecules in the regulation of satiety and body weight. Aberrant 5-HT transmission has been implicated in the pathogenesis of human obesity by in vivo positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques. However, results obtained thus far from studies of central 5-HTT availability have been inconsistent, which is thought to be brought about mainly by the low number of individuals with a high body mass index (BMI) previously used. The aim of this study was therefore to assess 5-HTT availability in the brains of highly obese otherwise healthy individuals compared with non-obese healthy controls.

Methods

We performed PET using the 5-HTT selective radiotracer [11C] DASB on 30 highly obese (BMI range between 35 and 55 kg/m2) and 15 age- and sex-matched non-obese volunteers (BMI range between 19 and 27 kg/m2) in a cross-sectional study design. The 5-HTT binding potential (BPND) was used as the outcome parameter.

Results

On a group level, there was no significant difference in 5-HTT BPND in various cortical and subcortical regions in individuals with the highest BMI compared with non-obese controls, while statistical models showed minor effects of age, sex, and the degree of depression on 5-HTT BPND.

Conclusion

The overall finding of a lack of significantly altered 5-HTT availability together with its high variance in obese individuals justifies the investigation of individual behavioral responses to external and internal cues which may further define distinct phenotypes and subgroups in human obesity.

Keywords

Serotonin Serotonin transporter Positron emission tomography (PET) Obesity Body mass index (BMI) Depression 

References

  1. 1.
    Leibowitz SF. Hypothalamic neurotransmitters in relation to normal and disturbed eating patterns. Ann N Y Acad Sci. 1987;499:137–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Garfield AS, Heisler LK. Pharmacological targeting of the serotonergic system for the treatment of obesity. J Physiol. 2009;587:49–60.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Smith SR, Weissman NJ, Anderson CM, Sanchez M, Chuang E, Stubbe S, et al. Behavioral Modification and Lorcaserin for Overweight and Obesity Management (BLOOM) Study Group. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363:245–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Huang XF, Huang X, Han M, Chen F, Storlien L, Lawrence AJ. 5-HT2A/2C receptor and 5-HT transporter densities in mice prone or resistant to chronic high-fat diet-induced obesity: a quantitative autoradiography study. Brain Res. 2004;1018:227–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Ratner C, Ettrup A, Bueter M, Haahr ME, Compan V, le Roux CW, et al. Cerebral markers of the serotonergic system in rat models of obesity and after Roux-en-Y gastric bypass. Obesity (Silver Spring). 2012;20:2133–41.CrossRefGoogle Scholar
  6. 6.
    Haahr ME, Rasmussen PM, Madsen K, Marner L, Ratner C, Gillings N, et al. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. Neuroimage. 2012;61:884–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Erritzoe D, Frokjaer VG, Haugbol S, Marner L, Svarer C, Holst K, et al. Brain serotonin 2A receptor binding: relations to body mass index, tobacco and alcohol use. Neuroimage. 2009;46:23–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Erritzoe D, Frokjaer VG, Haahr MT, Kalbitzer J, Svarer C, Holst KK, et al. Cerebral serotonin transporter binding is inversely related to body mass index. Neuroimage. 2010;52:284–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Hesse S, Villringer A, Schönknecht P, Becker GA, Patt M, Bresch A, et al. Serotonin transporter (SERT) availability, body mass index (BMI) and depression. J Nucl Med. 2009;50 Suppl 2:1294.Google Scholar
  10. 10.
    Haahr ME, Hansen DL, Fisher PM, Svarer C, Stenbæk DS, Madsen K, et al. Central 5-HT Neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci. 2015;35:5884–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Hautzinger M. Das Beck Depressions-Inventar (BDI) in der Klinik. Nervenarzt. 1991;62:689–6.PubMedGoogle Scholar
  12. 12.
    Hesse S, Stengler K, Regenthal R, Patt M, Becker GA, Franke A, et al. The serotonin transporter availability in untreated early-onset and late-onset patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2011;14:606–17.CrossRefPubMedGoogle Scholar
  13. 13.
    Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio)araalkylamines. J Med Chem. 2000;43:3103–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Ichise M, Liow JS, Lu JQ, Takano A, Model K, Toyama H, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23:1096–112.CrossRefPubMedGoogle Scholar
  15. 15.
    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Mai JK, Assheuer J, Paxinos G. Atlas of the human brain. 2nd ed. San Diego: Elsevier Academic; 2004.Google Scholar
  17. 17.
    Hainer V, Kabrnova K, Aldhoon B, Kunesova M, Wagenknecht M. Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci. 2006;1083:252–69.CrossRefPubMedGoogle Scholar
  18. 18.
    Stark JA, Davies KE, Williams SR, Luckman SM. Functional magnetic resonance imaging and c-Fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. Neuroimage. 2006;31:1228–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Hesse S, van de Giessen E, Zientek F, Petroff D, Winter K, Dickson JC, et al. Association of central serotonin transporter availability and body mass index in healthy Europeans. Eur Neuropsychopharmacol. 2014;24(8):1240–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Koopman KE, Booij J, Fliers E, Serlie MJ, la Fleur SE. Diet-induced changes in the Lean Brain: Hypercaloric high-fat-high-sugar snacking decreases serotonin transporters in the human hypothalamic region. Mol Metab. 2013;2:417–22.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li CS, Potenza MN, Lee DE, Planeta B, Gallezot JD, Labaree D, et al. Decreased norepinephrine transporter availability in obesity: positron emission tomography imaging with (S, S)-[11C]O-methylreboxetine. Neuroimage. 2014;86:306–10.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Uçeyler N, Schütt M, Palm F, Vogel C, Meier M, Schmitt A, et al. Lack of the serotonin transporter in mice reduces locomotor activity and leads to gender-dependent late onset obesity. Int J Obes (Lond). 2010;34:701–11.CrossRefGoogle Scholar
  23. 23.
    Homberg JR, la Fleur SE, Cuppen E. Serotonin transporter deficiency increases abdominal fat in female, but not male rats. Obesity (Silver Spring). 2010;18:137–45.CrossRefGoogle Scholar
  24. 24.
    Gryglewski G, Lanzenberger R, Kranz GS, Cumming P. Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab. 2014;34:1096–103.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Udo T, McKee SA, Grilo CM. Factor structure and clinical utility of the Beck depression inventory in patients with binge eating disorder and obesity. Gen Hosp Psychiatry. 2015;37:120–25.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zou N, Chetelat G, Baydogan MG, Li J, Fischer FU, Titov D, et al. Metabolic connectivity as index of verbal working memory. J Cereb Blood Flow Metab. 2015;35:1122–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Scharmüller W, Übel S, Ebner F, Schienle A. Appetite regulation during food cue exposure: a comparison of normal-weight and obese women. Neurosci Lett. 2012;518:106–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213:93–118.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Northoff G, Wiebking C, Feinberg T, Panksepp J. The ‘resting-state hypothesis’ of major depressive disorder-a translational subcortical-cortical framework for a system disorder. Neurosci Biobehav Rev. 2011;35:1929–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Bearer EL, Zhang X, Janvelyan D, Boulat B, Jacobs RE. Reward circuitry is perturbed in the absence of the serotonin transporter. Neuroimage. 2009;46:1091–104.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Swen Hesse
    • 1
    • 2
  • Michael Rullmann
    • 1
    • 2
    • 3
  • Julia Luthardt
    • 1
  • Karsten Winter
    • 4
    • 5
  • Mohammed K. Hankir
    • 2
  • Georg-Alexander Becker
    • 1
  • Franziska Zientek
    • 2
  • Georg Reissig
    • 2
  • Ralf Regenthal
    • 6
  • Mandy Drabe
    • 2
  • Christian Schinke
    • 7
  • Anke Bresch
    • 1
  • Katrin Arelin
    • 3
    • 8
  • Donald Lobsien
    • 9
  • Marianne Patt
    • 1
  • Philipp M. Meyer
    • 1
  • Mathias Fasshauer
    • 2
    • 10
  • Wiebke K. Fenske
    • 2
    • 10
  • Matthias Blüher
    • 10
    • 11
  • Michael Stumvoll
    • 2
    • 10
  • Osama Sabri
    • 1
    • 2
  1. 1.Department of Nuclear MedicineUniversity of LeipzigLeipzigGermany
  2. 2.Integrated Research and Treatment Centre Adiposity Diseases LeipzigLeipzigGermany
  3. 3.Max Planck Institute for Human Cognitive and Brain Sciences LeipzigLeipzigGermany
  4. 4.Centre for Translational Regenerative MedicineUniversity of LeipzigLeipzigGermany
  5. 5.Institute for Medical Informatics, Statistics, and EpidemiologyUniversity of LeipzigLeipzigGermany
  6. 6.Division of Clinical Pharmacology, Rudolf Boehm Institute of Pharmacology and ToxicologyUniversity of LeipzigLeipzigGermany
  7. 7.Department of NeurologyUniversity of LeipzigLeipzigGermany
  8. 8.Day Clinic for Cognitive NeurologyUniversity of LeipzigLeipzigGermany
  9. 9.Department of NeuroradiologyUniversity of LeipzigLeipzigGermany
  10. 10.Medical Department IIIUniversity of LeipzigLeipzigGermany
  11. 11.Collaborative Research Centre 1052 Obesity MechanismsUniversity of LeipzigLeipzigGermany

Personalised recommendations