[18F]FPRGD2 PET/CT imaging of integrin αvβ3 levels in patients with locally advanced rectal carcinoma

  • Nadia Withofs
  • Philippe Martinive
  • Jean Vanderick
  • Noëlla Bletard
  • Irène Scagnol
  • Frédéric Mievis
  • Fabrice Giacomelli
  • Philippe Coucke
  • Philippe Delvenne
  • Didier Cataldo
  • Sanjiv S. Gambhir
  • Roland Hustinx
Original Article



Our primary objective was to determine if [18F]FPRGD2 PET/CT performed at baseline and/or after chemoradiotherapy (CRT) could predict tumour regression grade (TRG) in locally advanced rectal cancer (LARC). Secondary objectives were to compare baseline [18F]FPRGD2 and [18F]FDG uptake, to evaluate the correlation between posttreatment [18F]FPRGD2 uptake and tumour microvessel density (MVD) and to determine if [18F]FPRGD2 and FDG PET/CT could predict disease-free survival.


Baseline [18F]FPRGD2 and FDG PET/CT were performed in 32 consecutive patients (23 men, 9 women; mean age 63 ± 8 years) with LARC before starting any therapy. A posttreatment [18F]FPRGD2 PET/CT scan was performed in 24 patients after the end of CRT (median interval 7 weeks, range 3 – 15 weeks) and before surgery (median interval 4 days, range 1 – 15 days).


All LARC showed uptake of both [18F]FPRGD2 (SUVmax 5.4 ± 1.5, range 2.7 – 9) and FDG (SUVmax 16.5 ± 8, range 7.1 – 36.5). There was a moderate positive correlation between [18F]FPRGD2 and FDG SUVmax (Pearson’s r = 0.49, p = 0.0026). There was a moderate negative correlation between baseline [18F]FPRGD2 SUVmax and the TRG (Spearman’s r = −0.37, p = 0.037), and a [18F]FPRGD2 SUVmax of >5.6 identified all patients with a complete response (TRG 0; AUC 0.84, 95 % CI 0.68 - 1, p = 0.029). In the 24 patients who underwent a posttreatment [18F]FPRGD2 PET/CT scan the response index, calculated as [(SUVmax1 − SUVmax2)/SUVmax1] × 100 %, was not associated with TRG. Post-treatment [18F]FPRGD2 uptake was not correlated with tumour MVD. Neither [18F]FPRGD2 nor FDG uptake predicted disease-free survival.


Baseline [18F]FPRGD2 uptake was correlated with the pathological response in patients with LARC treated with CRT. However, the specificity was too low to consider its clinical routine use.


RGD PET Rectal cancer Integrin Angiogenesis 



We thank the operators and Christine Mella (CYCLOTRON Research Centre), the technologists (Nuclear Medicine division), Isabelle Jupsin (Oncology Department), Kamilia Elkandoussi and Agnès Delga (Biobank, Pathology Department), Fabienne Perin (GIGA-Research, Laboratory of Tumour and Developmental Biology), Estelle Dortu and Chantal Humblet (GIGA-Research, Cytology and Histology Department), Laurence Seidel (Biostatistics Department) and Marcella Chavez (coordination of Translational Research in Oncology). Preliminary results were presented (as a poster) at the 2012 SNMMI Annual Meeting (Miami, Florida, US).

Compliance with ethical standards


The Belgian Fondation contre le Cancer and the federal Ministry of Health (Plan Cancer) supported the trial.

Conflicts of interest


Ethical approval

The institutional Committee on Ethics approved the present prospective study protocol registered in the European Clinical Trials Database (EudraCT) under the reference number 2010-019219-39.

Informed consent

Every patient provided signed written informed consent.

Supplementary material

259_2015_3219_Fig5_ESM.jpg (8 kb)
Supplementary Fig. 1

Baseline [18F]FPRGD2 and FDG mean SUVmax in the primary rectal tumours in relation to TRG in the 32 included patients. The asterisk indicates a significant difference in the baseline SUVmax in comparison with TRG 0. The difference was significant with [18F]FPRGD2 SUVmax for TRG 1 (p = 0.0285), TRG 2 (p = 0.0150) and TRG 3 (p = 0.0420), while it was only significant with FDG for TRG 1 (p = 0.0104). (JPEG 8 kb)

259_2015_3219_MOESM1_ESM.tif (655 kb)
High resolution image (TIFF 655 kb)
259_2015_3219_Fig6_ESM.jpg (6 kb)
Supplementary Fig. 2

[18F]FPRGD2 mean response index (RI) in the primary rectal tumours in relation to TRG in the 24 patients in whom the posttreatment [18F]FPRGD2 PET/CT scan was available. (JPEG 6 kb)

259_2015_3219_MOESM2_ESM.tif (432 kb)
High resolution image (TIFF 432 kb)
259_2015_3219_Fig7_ESM.jpg (6 kb)
Supplementary Figure 3

Correlation between baseline and post-CRT [18F]FPRGD2 SUVmax in the primary LARC in the 24 patients in whom the posttreatment [18F]FPRGD2 PET/CT scan was available. (JPEG 5 kb)

259_2015_3219_MOESM3_ESM.tif (386 kb)
High resolution image (TIFF 385 kb)
259_2015_3219_Fig8_ESM.jpg (12 kb)
Supplementary Figure 4

Correlations between the baseline [18F]FPRGD2 and FDG PET/CT parameters related to tumour volume: a ITV70% and MTV40%, b TTI70% and TLG. (JPEG 12 kb)

259_2015_3219_MOESM4_ESM.tif (767 kb)
High resolution image (TIFF 767 kb)


  1. 1.
    Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345:638–46.CrossRefPubMedGoogle Scholar
  2. 2.
    National Comprehensive Cancer Network; 2014Google Scholar
  3. 3.
    van Stiphout RG, Valentini V, Buijsen J, Lammering G, Meldolesi E, van Soest J, et al. Nomogram predicting response after chemoradiotherapy in rectal cancer using sequential PETCT imaging: a multicentric prospective study with external validation. Radiother Oncol. 2014;113:215–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Maas M, Beets-Tan RG, Lambregts DM, Lammering G, Nelemans PJ, Engelen SM, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol. 2011;29:4633–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Habr-Gama A, Sabbaga J, Gama-Rodrigues J, Sao Juliao GP, Proscurshim I, Bailao Aguilar P, et al. Watch and wait approach following extended neoadjuvant chemoradiation for distal rectal cancer: are we getting closer to anal cancer management? Dis Colon Rectum. 2013;56:1109–17.CrossRefPubMedGoogle Scholar
  6. 6.
    van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269:101–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Hotker AM, Garcia-Aguilar J, Gollub MJ. Multiparametric MRI of rectal cancer in the assessment of response to therapy: a systematic review. Dis Colon Rectum. 2014;57:790–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Joye I, Deroose CM, Vandecaveye V, Haustermans K. The role of diffusion-weighted MRI and 18F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: a systematic review. Radiother Oncol. 2014;113:158–65.CrossRefPubMedGoogle Scholar
  9. 9.
    Memon S, Lynch AC, Akhurst T, Ngan SY, Warrier SK, Michael M, et al. Systematic review of FDG-PET prediction of complete pathological response and survival in rectal cancer. Ann Surg Oncol. 2014;21:3598–607.CrossRefPubMedGoogle Scholar
  10. 10.
    Dineen S. Biology of rectal cancer – the rationale for targeted therapy. Crit Rev Oncog. 2012;17:383–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol. 2009;27:3020–6.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Garcia M, Martinez-Villacampa M, Santos C, Navarro V, Teule A, Losa F, et al. Phase II study of preoperative bevacizumab, capecitabine and radiotherapy for resectable locally-advanced rectal cancer. BMC Cancer. 2015;15:1052.CrossRefGoogle Scholar
  13. 13.
    Salazar R, Capdevila J, Laquente B, Manzano JL, Pericay C, Villacampa MM, et al. A randomized phase II study of capecitabine-based chemoradiation with or without bevacizumab in resectable locally advanced rectal cancer: clinical and biological features. BMC Cancer. 2015;15:60.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Haubner R, Beer AJ, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S86–103.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of a αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2007;34:1823–31.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Withofs N, Signolle N, Somja J, Lovinfosse P, Nzaramba EM, Mievis F, et al. 18F-FPRGD2 PET/CT imaging of integrin αvβ3 in renal carcinomas: correlation with histopathology. J Nucl Med. 2015;56:361–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Robertson JH, Iga AM, Sales KM, Winslet MC, Seifalian AM. Integrins: a method of early intervention in the treatment of colorectal liver metastases. Curr Pharm Des. 2008;14:296–305.CrossRefPubMedGoogle Scholar
  19. 19.
    Agrez MV, Bates RC, Mitchell D, Wilson N, Ferguson N, Anseline P, et al. Multiplicity of fibronectin-binding αv integrin receptors in colorectal cancer. Br J Cancer. 1996;73:887–92.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Conti JA, Kendall TJ, Bateman A, Armstrong TA, Papa-Adams A, Xu Q, et al. The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via αv integrin ligation. Clin Cancer Res. 2008;14:6405–13.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Lambrechts D, Lenz HJ, de Haas S, Carmeliet P, Scherer SJ. Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol. 2013;31:1219–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Elez E, Kocakova I, Hohler T, Martens UM, Bokemeyer C, Van Cutsem E, et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial. Ann Oncol. 2015;26:132–40.Google Scholar
  24. 24.
    Ha SY, Shin J, Kim JH, Kang MS, Yoo HY, Kim HH, et al. Overexpression of integrin αv correlates with poor prognosis in colorectal cancer. J Clin Pathol. 2014;67:576–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Abdollahi A, Folkman J. Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat. 2010;13:16–28.CrossRefPubMedGoogle Scholar
  26. 26.
    Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R, et al. Inhibition of αvβ3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res. 2005;11:6270–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Thonon D, Goblet D, Goukens E, Kaisin G, Paris J, Aerts J, et al. Fully automated preparation and conjugation of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) with RGD peptide using a GE FASTlab synthesizer. Mol Imaging Biol. 2011;13:1088–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Ryan R, Gibbons D, Hyland JM, Treanor D, White A, Mulcahy HE, et al. Pathological response following long-course neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Histopathology. 2005;47:141–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Edge SB, Compton CC, Fritz AG, Greene FL, Trotti A. AJCC cancer staging manual, 7th ed. NY: Springer; 2010.Google Scholar
  30. 30.
    Beer AJ, Lorenzen S, Metz S, Herrmann K, Watzlowik P, Wester HJ, et al. Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med. 2008;49:22–9.Google Scholar
  31. 31.
    Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F]galacto-RGD positron emission tomography. Neuro Oncol. 2009;11:861–70.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Mena E, Owenius R, Turkbey B, Sherry R, Bratslavsky G, Macholl S, et al. [18F]Fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ3 and αvβ5 integrins. Eur J Nucl Med Mol Imaging. 2014;41:1879–88.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A. 1987;84:6471–5.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Fokas E, Liersch T, Fietkau R, Hohenberger W, Beissbarth T, Hess C, et al. Tumor regression grading after preoperative chemoradiotherapy for locally advanced rectal carcinoma revisited: updated results of the CAO/ARO/AIO-94 trial. J Clin Oncol. 2014;32:1554–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Iagaru A, Mosci C, Mittra E, Zaharchuk G, Fischbein N, Harsh G, et al. Glioblastoma multiforme recurrence: an exploratory study of 18F-FPPRGD2 PET/CT. Radiology. 2015;141550. doi:10.1148/radiol.2015141550
  36. 36.
    Metz S, Ganter C, Lorenzen S, van Marwick S, Herrmann K, Lordick F, et al. Phenotyping of tumor biology in patients by multimodality multiparametric imaging: relationship of microcirculation, αvβ3 expression, and glucose metabolism. J Nucl Med. 2010;51:1691–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoon HJ, Kang KW, Chun IK, Cho N, Im SA, Jeong S, et al. Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2014;41:1534–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Minamimoto R, Jamali M, Barkhodari A, Mosci C, Mittra E, Shen B, et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging. 2015;42:1850–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Guillem JG, Ruby JA, Leibold T, Akhurst TJ, Yeung HW, Gollub MJ, et al. Neither FDG-PET nor CT can distinguish between a pathological complete response and an incomplete response after neoadjuvant chemoradiation in locally advanced rectal cancer: a prospective study. Ann Surg. 2013;258:289–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadia Withofs
    • 1
  • Philippe Martinive
    • 2
  • Jean Vanderick
    • 2
  • Noëlla Bletard
    • 3
  • Irène Scagnol
    • 3
  • Frédéric Mievis
    • 4
  • Fabrice Giacomelli
    • 4
  • Philippe Coucke
    • 2
  • Philippe Delvenne
    • 3
  • Didier Cataldo
    • 5
  • Sanjiv S. Gambhir
    • 6
  • Roland Hustinx
    • 1
  1. 1.Department of Medical PhysicsDivision of Nuclear Medicine and Oncological ImagingLiegeBelgium
  2. 2.Division of Radiation Oncology, Department of Medical PhysicsCHU LiègeLiègeBelgium
  3. 3.Department of PathologyCHU LiègeLiègeBelgium
  4. 4.CYCLOTRON Research CentreUniversity of LiègeLiègeBelgium
  5. 5.Laboratory of Tumour and Developmental Biology, GIGA-ResearchUniversity of LiègeLiègeBelgium
  6. 6.Molecular Imaging Program at Stanford (MIPS), Radiology DepartmentStanford UniversityStanfordUSA

Personalised recommendations