Advertisement

Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis

  • Kerstin HeurlingEmail author
  • Antoine Leuzy
  • Eduardo R. Zimmer
  • Mark Lubberink
  • Agneta Nordberg
Review Article

Abstract

In Alzheimer’s disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, 11C-Pittsburgh compound B ([11C]PIB), several 18F ligands have been developed that circumvent the limitations of [11C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [18F]AV-45 ([18F]florbetapir; Amyvid™), [18F]-BAY94-9172 ([18F]florbetaben; Neuraceq™) and [18F]3′-F-PIB ([18F]flutemetamol; Vizamyl™). The present review aims to summarize and discuss the currently available knowledge on [18F]flutemetamol PET. As the 18F analogue of [11C]PIB, [18F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies.

Keywords

β-amyloid [18F]Flutemetamol Vizamyl Positron emission tomography Mild cognitive impairment Alzheimer’s disease 

Notes

Compliance with ethical standards

Conflicts of interest

KH is a former employee at GE Healthcare (Uppsala, Sweden). AL, ERZ, ML and AN declare no competing interests.

References

  1. 1.
    Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92. doi: 10.1002/ana.22248.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804. doi: 10.1056/NEJMoa1202753.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19. doi: 10.1002/ana.20009.PubMedCrossRefGoogle Scholar
  4. 4.
    US Food and Drug Administration. FDA approves imaging drug Amyvid: estimates brain amyloid plaque content in patients with cognitive decline. 2012. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm299678.htm. Accessed 24 May 2015.
  5. 5.
  6. 6.
    US Food and Drug Administration. FDA approves a second amyloid imaging agent. 2013. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm299687.htm. Accessed 24 May 2015.
  7. 7.
    European Medicines Agency. Neuraceq: florbetaben (18F) Amyvid: florbetapir (18F). 2014. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002553/human_med_001716.jsp&mid=WC0b01ac058001d124. Accessed 24 May 2015.
  8. 8.
    US Food and Drug Administration. FDA approves second brain imaging drug to help evaluate patients for Alzheimer’s disease, dementia. 2013. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm372261.htm. Accessed 24 May 2015.
  9. 9.
    European Medicines Agency. Vizamyl: flutemetamol (18F). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002557/WC500172950.pdf. Accessed 24 May 2015.
  10. 10.
    Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7. doi: 10.2967/jnumed.112.109009.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer’s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry. 2012;83:923–6. doi: 10.1136/jnnp-2012-302548.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al. Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:983–9. doi: 10.1007/s00259-012-2088-x.PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. Alzheimers Dement. 2013;9:e-1–16. doi: 10.1016/j.jalz.2013.01.002.
  14. 14.
    Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging. Alzheimers Dement. 2013;9:e106–9. doi: 10.1016/j.jalz.2013.06.001.PubMedCrossRefGoogle Scholar
  15. 15.
    European Medicines Agency. Vizamyl flutemetamol (18F). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion__Initial_authorisation/human/002557/WC500169304.pdf. Accessed 24 May 2015.
  16. 16.
    General Electric Company. Vizamyl (flutemetamol F 18 injection). 2014. http://www3.gehealthcare.com/en/products/categories/nuclear_imaging_agents/vizamyl. Accessed 24 May 2015.
  17. 17.
    Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407. doi: 10.1007/s00259-014-2753-3.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mason NS, Mathis CA, Klunk WE. Positron emission tomography radioligands for in vivo imaging of Aβ plaques. J Labelled Comp Radiopharm. 2013;56:89–95. doi: 10.1002/jlcr.2989.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Laforce Jr R, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3:31. doi: 10.1186/alzrt93.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med. 2012;42:423–32. doi: 10.1053/j.semnuclmed.2012.07.001.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh compound B for in vivo PET imaging of fibrillar amyloid-beta. Adv Pharmacol. 2012;64:27–81. doi: 10.1016/B978-0-12-394816-8.00002-7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Catafau AM, Bullich S. Amyloid PET imaging: applications beyond Alzheimer’s disease. Clin Transl Imaging. 2015;3:39–55. doi: 10.1007/s40336-014-0098-3.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    de Lartigue J. Flutemetamol (18F): a β-amyloid positron emission tomography tracer for Alzheimer’s and dementia diagnosis. Drugs Today. 2014;50:219–29. doi: 10.1358/dot.2014.50.3.2116672.PubMedCrossRefGoogle Scholar
  24. 24.
    Mathis CA, Ikonomovic MD, Debnath ML, Hamilton RL, DeKosky ST, Klunk WE. Comparison of the binding of 3′-F-PiB and PiB in human brain homogenates. Neuroimage. 2008;41(Suppl):T113–4. doi: 10.1016/j.neuroimage.2008.04.082.CrossRefGoogle Scholar
  25. 25.
    Mathis C, Lopresti B, Mason N, Price J, Flatt N, Bi W, et al. Comparison of the amyloid imaging agents [F-18]3′-F-PIB and [C-11]PIB in Alzheimer’s disease and control subjects. J Nucl Med. 2007;48(Suppl 2):56P.Google Scholar
  26. 26.
    Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ, et al. Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med. 2009;50:818–22. doi: 10.2967/jnumed.108.060756.PubMedCrossRefGoogle Scholar
  27. 27.
    Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251–9. doi: 10.2967/jnumed.109.063305.PubMedCrossRefGoogle Scholar
  28. 28.
    Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Någren KA, Rinne JO. Biodistribution and radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med. 2007;48:128–33.Google Scholar
  29. 29.
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. doi: 10.1038/sj.jcbfm.9600146.
  30. 30.
    Groenning M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol. 2010;3:1–18. doi: 10.1007/s12154-009-0027-5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, et al. Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol. 2015;22:499–505. doi: 10.1038/nsmb.2991.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.PubMedCrossRefGoogle Scholar
  33. 33.
    Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29. doi: 10.1002/ana.22068.PubMedCrossRefGoogle Scholar
  34. 34.
    Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2014;41:290–300. doi: 10.1007/s00259-013-2564-y.PubMedCrossRefGoogle Scholar
  35. 35.
    Heurling K, Vandenberghe R, Owenius R, Thurfjell L, Buckley CJ, Brooks DJ. Pons as an alternative reference region in [18F]flutemetamol quantification of amyloidosis. Neuroimage. 2010;52:S137. doi: 10.1016/j.neuroimage.2010.04.111.CrossRefGoogle Scholar
  36. 36.
    Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D, et al. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement. 2013;9:295–301. doi: 10.1016/j.jalz.2012.01.006.PubMedCrossRefGoogle Scholar
  37. 37.
    Thurfjell L, Lötjönen J, Lundqvist R, Koikkalainen J, Soininen H, Waldemar G, et al. Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener Dis. 2012;10:246–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Tamminen JN, Tillgren T, et al. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol. 2010;68:446–53. doi: 10.1002/ana.22100.PubMedCrossRefGoogle Scholar
  39. 39.
    Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010;68:535–40. doi: 10.1002/ana.22015.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rinne JO, Frantzen J, Leinonen V, Lonnrot K, Laakso A, Virtanen KA, et al. Prospective flutemetamol positron emission tomography and histopathology in normal pressure hydrocephalus. Neurodegener Dis. 2014;13:237–45. doi: 10.1159/000355256.PubMedGoogle Scholar
  41. 41.
    Wong DF, Moghekar AR, Rigamonti D, Brašić JR, Rousset O, Willis W, et al. An in vivo evaluation of cerebral cortical amyloid with [18F]flutemetamol using positron emission tomography compared with parietal biopsy samples in living normal pressure hydrocephalus patients. Mol Imaging Biol. 2013;15:230–7. doi: 10.1007/s11307-012-0583-x.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wolk DA, Grachev ID, Buckley C, Kazi H, Grady MS, Trojanowski JQ, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68:1398–403. doi: 10.1001/archneurol.2011.153.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Leinonen V, Rinne JO, Virtanen KA, Eskola O, Rummukainen J, Huttunen J, et al. Positron emission tomography with [18F]flutemetamol and [11C]PiB for in vivo detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. Eur J Neurol. 2013;20:1043–52. doi: 10.1111/ene.12102.PubMedCrossRefGoogle Scholar
  44. 44.
    Rinne JO, Wong DF, Wolk DA, Leinonen V, Arnold SE, Buckley C, et al. [(18)F]Flutemetamol PET imaging and cortical biopsy histopathology for fibrillar amyloid β detection in living subjects with normal pressure hydrocephalus: pooled analysis of four studies. Acta Neuropathol. 2012;124:833–45. doi: 10.1007/s00401-012-1051-z.PubMedCrossRefGoogle Scholar
  45. 45.
    Leinonen V, Rinne JO, Wong DF, Wolk D, Trojanowski JQ, Sherwin PF, et al. Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun. 2014;2:46. doi: 10.1186/2051-5960-2-46.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.Google Scholar
  47. 47.
    Thal DR, Beach TG, Zanetti M, Heurling K, Buckley C, Smith A. Diagnostic value of [18F]flutemetamol amyloid PET: comparison between imaging and neuropathology. Neurobiol Aging. 2014;35:S22. doi: 10.1016/j.neurobiolaging.2014.01.115.CrossRefGoogle Scholar
  48. 48.
    Buckley C, Ikonomovic M, Smith A, Heurling K, Farrar G, Brooks D, et al. Flutemetamol F 18 injection PET images reflect brain beta-amyloid levels. Alzheimers Dement. 2014;8:P90. doi: 10.1016/j.jalz.2012.05.221.CrossRefGoogle Scholar
  49. 49.
    Thal D, Beach TG, Zanette M, Heurling K, Buckley C, Smith A. [18F]flutemetamol amyloid PET in symptomatic Alzheimer’s disease (AD) and pathologically preclinical AD (P-PREAD) in comparison to non-AD controls: impact of cerebral amyloid angiopathy. Alzheimers Dement. 2014;10:P130. doi: 10.1016/j.jalz.2014.04.060.
  50. 50.
    Wolk DA, Duara R, Sadowsky C. [18F]flutemetamol amyloid PET imaging: outcome of a phase III study in subjects with amnestic mild cognitive impairment after a 3-year follow-up. Alzheimers Dement. 2014;10:P898. doi: 10.1016/j.jalz.2014.07.079.CrossRefGoogle Scholar
  51. 51.
    Senda M, Sasaki M, Fujikawa K, Paterson C, McParland B. Biodistribution and radiation dosimetry of flutemetamol (18F) injection in Japanese healthy volunteers. J Nucl Med. 2012;53:1510.Google Scholar
  52. 52.
    Sherwin P, Wolber J, Longenecker F, Clark P, Smith A, Nicolas F, et al. Effectiveness of an electronic training program to teach interpretation of [18F]flutemetamol PET amyloid images. Hum Amyloid Imaging Meet. 2013:P57-P.Google Scholar
  53. 53.
    Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage. 2013;64:517–25. doi: 10.1016/j.neuroimage.2012.09.015.PubMedCrossRefGoogle Scholar
  54. 54.
    Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8. doi: 10.2967/jnumed.114.142109.PubMedCrossRefGoogle Scholar
  55. 55.
    Lundqvist R, Lilja J, Thomas BA, Lötjönen J, Villemagne VL, Rowe CC, et al. Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. J Nucl Med. 2013;54:1472–8. doi: 10.2967/jnumed.112.115006.PubMedCrossRefGoogle Scholar
  56. 56.
    Snellman A, Rokka J, Lopez-Picon F, Eskola O, Wilson I, Farrar G, et al. Pharmacokinetics of [18F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1784–95. doi: 10.1007/s00259-012-2178-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Snellman A, Rokka J, López-Picón F, Eskola O, Salmona M, Forloni G, et al. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer’s disease with a high specific activity PET imaging agent [18F]flutemetamol. EJNMMI Res. 2014;4:37. doi: 10.1186/s13550-014-0037-3.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Adamczuk K, De Weer A-S, Nelissen N, Chen K, Sleegers K, Bettens K, et al. Polymorphism of brain derived neurotrophic factor influences β amyloid load in cognitively intact apolipoprotein E ε4 carriers. Neuroimage Clin. 2013;2:512–20. doi: 10.1016/j.nicl.2013.04.001.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Adamczuk K, De Weer A-S, Nelissen N, Dupont P, Sunaert S, Bettens K, et al. Functional changes in the language network in response to increased amyloid β deposition in cognitively intact older adults. Cereb Cortex. 2014. doi: 10.1093/cercor/bhu286.PubMedGoogle Scholar
  60. 60.
    Duff K, Foster NL, Dennett K, Hammers DB, Zollinger LV, Christian PE, et al. Amyloid deposition and cognition in older adults: the effects of premorbid intellect. Arch Clin Neuropsychol. 2013;28:665–71. doi: 10.1093/arclin/act047.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Palmqvist S, Zetterberg H, Blennow K, Vestberg S, Andreasson U, Brooks DJ, et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 2014;71:1282–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Lautner R, Palmqvist S, Mattsson N, Andreasson U, Wallin A, Pålsson E, et al. Apolipoprotein E genotype and the diagnostic accuracy of cerebrospinal fluid biomarkers for Alzheimer disease. JAMA Psychiatry. 2014;71:1183–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Ivanoiu A, Dricot L, Gilis N, Grandin C, Lhommel R, Quenon L, et al. Classification of non-demented patients attending a memory clinic using the new diagnostic criteria for Alzheimer’s disease with disease-related biomarkers. J Alzheimers Dis. 2015;43:835–47. doi: 10.3233/JAD-140651.PubMedGoogle Scholar
  64. 64.
    Pietrzak RH, Lim YY, Neumeister A, Ames D, Ellis K, Harrington K, et al. Amyloid-β, anxiety, and cognitive decline in preclinical Alzheimer disease: a multicenter prospective cohort study. JAMA Psychiatry. 2015;72:284–91. doi: 10.1001/jamapsychiatry.2014.2476.
  65. 65.
    US Food and Drug Administration. FDA prescribing information for Amyvid. 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202008s000lbl.pdf. Accessed 24 Mar 2015.
  66. 66.
    European Medicines Agency. EMA SPC for Amyvid. 2014. http://ec.europa.eu/health/documents/communityregister/2014/20140627129117/anx_129117_en.pdf. Accessed 24 May 2015.
  67. 67.
    US Food and Drug Administration. FDA prescribing information for Neuraceq. 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204677s000lbl.pdf. Accessed 24 Mar 2015.
  68. 68.
    European Medicines Agency. SPC for Neuraceq. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002553/WC500162592.pdf. Accessed 24 May 2015.
  69. 69.
    US Food and Drug Administration. FDA prescribing information for Vizamyl. 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203137s000lbl.pdf. Accessed 24 Mar 2015.
  70. 70.
    European Medicines Agency. EMA summary of product characteristics (SPC) for Vizamyl. 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002557/WC500172950.pdf. Accessed 24 May 2015.
  71. 71.
    Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous Sr MD, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1-15.e1–4. doi: 10.1016/j.jalz.2014.07.003. e1-4.
  72. 72.
    Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60. doi: 10.1212/WNL.0b013e3181b23564.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Koivunen J, Scheinin N, Virta JR, Aalto S, Vahlberg T, Någren K, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90. doi: 10.1212/WNL.0b013e318212015e.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65:557–68. doi: 10.1002/ana.21598.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65. doi: 10.1016/j.neurobiolaging.2007.03.029.PubMedCrossRefGoogle Scholar
  76. 76.
    Zwan MD, Bouwman FH, Van der Flier WM, Lammertsma A, Berckel BV, Scheltens P. Diagnostic value of amyloid imaging in early onset dementia. Alzheimers Dement. 10:P248. doi:  10.1016/j.jalz.2014.04.384.
  77. 77.
    Galton CJ, Patterson K, Xuereb JH, Hodges JR. Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000;123(Pt 3):484–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Graham A, Davies R, Xuereb J, Halliday G, Kril J, Creasey H, et al. Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain. 2005;128:597–605. doi: 10.1093/brain/awh348.PubMedCrossRefGoogle Scholar
  79. 79.
    Chiotis K, Carter SF, Farid K, Savitcheva I, Nordberg A, Diagnostic Molecular Imaging (DiM) network and the Alzheimer’s Disease Neuroimaging Initiative. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging. Eur J Nucl Med Mol Imaging. 2015;42:1492–506. doi: 10.1007/s00259-015-3115-5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, et al. Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging. 2005;26:1183–92. doi: 10.1016/j.neurobiolaging.2004.10.006.PubMedCrossRefGoogle Scholar
  81. 81.
    Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7. doi: 10.2967/jnumed.111.089730.PubMedCrossRefGoogle Scholar
  82. 82.
    Edison P, Ahmed I, Fan Z, Hinz R, Gelosa G, Ray Chaudhuri K, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38:938–49. doi: 10.1038/npp.2012.255.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Gomperts SN, Locascio JJ, Marquie M, Santarlasci AL, Rentz DM, Maye J, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord. 2012;27:965–73. doi: 10.1002/mds.25048.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    US National Institutes of Health. Clinical trials involving [18F]flutemetamol PET. 2014. https://clinicaltrials.gov/ct2/results?term=flutemetamol&Search=Search CT. Accessed 24 May 2015.
  85. 85.
    Faria Dde P, Copray S, Sijbesma JW, Willemsen AT, Buchpiguel CA, Dierckx RA, et al. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur J Nucl Med Mol Imaging. 2014;41:995–1003. doi: 10.1007/s00259-013-2682-6.PubMedCrossRefGoogle Scholar
  86. 86.
    Glodzik L, Rusinek H, Li J, Zhou C, Tsui W, Mosconi L, et al. Reduced retention of Pittsburgh compound B in white matter lesions. Eur J Nucl Med Mol Imaging. 2015;42:97–102. doi: 10.1007/s00259-014-2897-1.PubMedCrossRefGoogle Scholar
  87. 87.
    Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(11)C]-2-(4′-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol. 2011;69:673–80. doi: 10.1002/ana.22320.
  88. 88.
    Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Farès C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004;35:503–42. doi: 10.1016/j.micron.2004.04.005.PubMedCrossRefGoogle Scholar
  89. 89.
    Fodero-Tavoletti MT, Rowe CC, McLean CA, Leone L, Li QX, Masters CL, et al. Characterization of PiB binding to white matter in Alzheimer disease and other dementias. J Nucl Med. 2009;50:198–204. doi: 10.2967/jnumed.108.057984.PubMedCrossRefGoogle Scholar
  90. 90.
    Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL. Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology. 1990;9:233–42.PubMedCrossRefGoogle Scholar
  91. 91.
    Mortimer JA, van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, et al. Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case–control studies. EURODEM Risk Factors Research Group. Int J Epidemiol. 1991;20 Suppl 2:S28–35.PubMedCrossRefGoogle Scholar
  92. 92.
    Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74:857–62.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55:1158–66.PubMedCrossRefGoogle Scholar
  94. 94.
    Lye TC, Shores EA. Traumatic brain injury as a risk factor for Alzheimer’s disease: a review. Neuropsychol Rev. 2000;10:115–29.PubMedCrossRefGoogle Scholar
  95. 95.
    Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1994;57:419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64. doi: 10.1093/brain/aws307.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71:23–31. doi: 10.1001/jamaneurol.2013.4847.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kawai N, Kawanishi M, Kudomi N, Maeda Y, Yamamoto Y, Nishiyama Y, et al. Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh compound-B. Brain Inj. 2013;27:1026–31. doi: 10.3109/02699052.2013.794963.PubMedCrossRefGoogle Scholar
  99. 99.
    Mitsis EM, Riggio S, Kostakoglu L, Dickstein DL, Machac J, Delman B, et al. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry. 2014;4:e441. doi: 10.1038/tp.2014.91.
  100. 100.
    Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54:213–20. doi: 10.2967/jnumed.111.102053.PubMedCrossRefGoogle Scholar
  101. 101.
    Lhommel R, Sempoux C, Ivanoiu A, Michaux L, Gerber B. Is 18F-flutemetamol PET/CT able to reveal cardiac amyloidosis? Clin Nucl Med. 2014;39:747–9. doi: 10.1097/RLU.0000000000000492.PubMedCrossRefGoogle Scholar
  102. 102.
    Alzforum. Biogen antibody buoyed by phase 1 data and hungry investors. 2015. http://www.alzforum.org/news/conference-coverage/biogen-antibody-buoyed-phase-1-data-and-hungry-investors. Accessed 25 May 2015.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kerstin Heurling
    • 1
    Email author
  • Antoine Leuzy
    • 2
  • Eduardo R. Zimmer
    • 3
    • 4
  • Mark Lubberink
    • 1
  • Agneta Nordberg
    • 2
    • 5
  1. 1.Section of Nuclear Medicine and PET, Department of Surgical SciencesUppsala UniversityUppsalaSweden
  2. 2.Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer NeurobiologyKarolinska InstitutetHuddingeSweden
  3. 3.Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreBrazil
  4. 4.Department of BiochemistryFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  5. 5.Department of Geriatric MedicineKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations