Advertisement

Clinical value of SPECT/CT in the painful total knee arthroplasty (TKA): a prospective study in a consecutive series of 100 TKA

  • Michael T. Hirschmann
  • Felix Amsler
  • Helmut Rasch
Original Article

Abstract

Purpose

Bone single photon emission computed tomography (SPECT)/CT is considered as beneficial in unhappy patients with pain, stiffness or swelling after total knee arthroplasty (TKA). The purpose of this study was to identify typical patterns of bone tracer uptake (BTU), distribution and intensity values in patients after TKA. The above findings were correlated with the type and fixation of TKA, the time from TKA and intraoperative findings at revision surgery.

Methods

A total of 100 knees of 84 consecutive patients (mean age ± SD 70 ± 11 years) after TKA with persistent knee pain were prospectively included. All patients underwent clinical examination, standardized radiographs and 99mTc-hydroxymethane diphosphonate (HDP) SPECT/CT as part of a routine diagnostic algorithm. The diagnosis before and after SPECT/CT and final treatment were recorded. TKA component position was determined on 3-D reconstructed images. Intensity and anatomical distribution of BTU was determined. Maximum intensity values were recorded as well as ratios in relation to the proximal midshaft of the femur. Univariate analyses (chi-square test, Pearson’s correlation and t test for independent samples) were performed (p < 0.05).

Results

SPECT/CT changed the clinical diagnosis and final treatment in 85/100 (85 %) knees. Intraoperative findings confirmed the preoperative SPECT/CT diagnosis in 32/33 knees (97 %). TKA loosening as well as progression of patellofemoral osteoarthritis (OA) was correctly diagnosed in 100 % of knees. Typical patterns of BTU for specific pathologies were identified. Loose femoral TKA components significantly correlated with increased BTU at the lateral femoral regions (p < 0.05). Loose tibial TKA components significantly correlated with increased BTU at all tibial regions (p < 0.05) and around the tibial peg (p > 0.01).

Conclusion

The diagnostic benefits of SPECT/CT in patients after TKA have been proven. Typical pathology-related BTU patterns were identified, which will improve reporting quality. Due to the benefits in establishing the correct diagnosis, SPECT/CT should be part of the routine diagnostic algorithm for patients with pain after TKA.

Keywords

Knee SPECT/CT SPECT CT Total knee arthroplasty Replacement Component position Tracer uptake Bone 

Notes

Compliance with ethical standards

Funding

This study was funded by a research grant from Deutsche Arthrose-Hilfe e.V., Frankfurt, Germany.

Conflicts of interest

None.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Mannion AF, Kämpfen S, Munzinger U, Kramers-de Quervain I. The role of patient expectations in predicting outcome after total knee arthroplasty. Arthritis Res Ther 2009;11(5):R139. doi: 10.1186/ar2811.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Hirschmann MT, Konala P, Iranpour F, Kerner A, Rasch H, Friederich NF. Clinical value of SPECT/CT for evaluation of patients with painful knees after total knee arthroplasty–a new dimension of diagnostics? BMC Musculoskelet Disord 2011;12:36. doi: 10.1186/1471-2474-12-36.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Rasch H, Falkowski AL, Forrer F, Henckel J, Hirschmann MT. 4D-SPECT/CT in orthopaedics: a new method of combined quantitative volumetric 3D analysis of SPECT/CT tracer uptake and component position measurements in patients after total knee arthroplasty. Skeletal Radiol 2013;42(9):1215–23. doi: 10.1007/s00256-013-1643-2.CrossRefPubMedGoogle Scholar
  4. 4.
    Hirschmann MT, Testa E, Amsler F, Friederich NF. The unhappy total knee arthroplasty (TKA) patient: higher WOMAC and lower KSS in depressed patients prior and after TKA. Knee Surg Sports Traumatol Arthrosc 2013;21(10):2405–11. doi: 10.1007/s00167-013-2409-z.CrossRefPubMedGoogle Scholar
  5. 5.
    Hirschmann MT, Henckel J, Rasch H. SPECT/CT in patients with painful knee arthroplasty-what is the evidence? Skeletal Radiol 2013;42(9):1201–7. doi: 10.1007/s00256-013-1657-9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hirschmann MT, Wagner CR, Rasch H, Henckel J. Standardized volumetric 3D-analysis of SPECT/CT imaging in orthopaedics: overcoming the limitations of qualitative 2D analysis. BMC Med Imaging 2012;12:5. doi: 10.1186/1471-2342-12-5.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Schön SN, Afifi FK, Rasch H, Amsler F, Friederich NF, Arnold MP, et al. Assessment of in vivo loading history of the patellofemoral joint: a study combining patellar position, tilt, alignment and bone SPECT/CT. Knee Surg Sports Traumatol Arthrosc 2014;22(12):3039–46. doi: 10.1007/s00167-013-2698-2.CrossRefPubMedGoogle Scholar
  8. 8.
    Mucha A, Dordevic M, Testa EA, Rasch H, Hirschmann MT. Assessment of the loading history of patients after high tibial osteotomy using SPECT/CT—a new diagnostic tool and algorithm. J Orthop Surg Res 2013;8(1):46. doi: 10.1186/1749-799X-8-46.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Hirschmann MT, Schön S, Afifi FK, Amsler F, Rasch H, Friederich NF, et al. Assessment of loading history of compartments in the knee using bone SPECT/CT: a study combining alignment and 99mTc-HDP tracer uptake/distribution patterns. J Orthop Res 2013;31(2):268–74. doi: 10.1002/jor.22206.CrossRefPubMedGoogle Scholar
  10. 10.
    Henderson IJ, Tuy B, Connell D, Oakes B, Hettwer WH. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months. J Bone Joint Surg Br 2003;85(7):1060–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Ryd L, Gustafson T, Lindstrand A. 99mTc-diphosphonate scintigraphy in successful knee arthroplasty and its relation to micromotion. Clin Orthop Relat Res 1993;287:61–7.PubMedGoogle Scholar
  12. 12.
    Klett R, Steiner D, Laurich S, Bauer R, Kordelle J. Evaluation of aseptic loosening of knee prostheses by quantitative bone scintigraphy. Nuklearmedizin 2008;47(4):163–6.PubMedGoogle Scholar
  13. 13.
    Sacchetti GM, Ghisellini F, Brambilla M, De Consoli A, Fornara P, Rizzo E, et al. Quantitative scintigraphic evaluation of total knee arthroplasties: a feasibility study. Clin Orthop Relat Res 1996;325:181–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Saari T, Uvehammer J, Carlsson LV, Regnér L, Kärrholm J. Posterior stabilized component increased femoral bone loss after total knee replacement. 5-year follow-up of 47 knees using dual energy X-ray absorptiometry. Knee 2006;13(6):435–9. doi: 10.1016/j.knee.2006.08.002.CrossRefPubMedGoogle Scholar
  15. 15.
    Soininvaara T, Nikola T, Vanninen E, Miettinen H, Kröger H. Bone mineral density and single photon emission computed tomography changes after total knee arthroplasty: a 2-year follow-up study. Clin Physiol Funct Imaging 2008;28(2):101–6. doi: 10.1111/j.1475-097X.2007.00782.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Windisch C, Windisch B, Kolb W, Kolb K, Grützner P, Roth A. Osteodensitometry measurements of periprosthetic bone using dual energy X-ray absorptiometry following total knee arthroplasty. Arch Orthop Trauma Surg 2012;132(11):1595–601. doi: 10.1007/s00402-012-1601-9.CrossRefPubMedGoogle Scholar
  17. 17.
    Minoda Y, Ikebuchi M, Kobayashi A, Iwaki H, Inori F, Nakamura H. A cemented mobile-bearing total knee replacement prevents periprosthetic loss of bone mineral density around the femoral component: a matched cohort study. J Bone Joint Surg Br 2010;92(6):794–8. doi: 10.1302/0301-620X.92B6.23159.CrossRefPubMedGoogle Scholar
  18. 18.
    Toegel S, Hoffmann O, Wadsak W, Ettlinger D, Mien LK, Wiesner K, et al. Uptake of bone-seekers is solely associated with mineralisation! A study with 99mTc-MDP, 153Sm-EDTMP and 18F-fluoride on osteoblasts. Eur J Nucl Med Mol Imaging 2006;33(4):491–4. doi: 10.1007/s00259-005-0026-x.CrossRefPubMedGoogle Scholar
  19. 19.
    Li MG, Nilsson KG. No relationship between postoperative changes in bone density at the proximal tibia and the migration of the tibial component 2 years after total knee arthroplasty. J Arthroplasty 2001;16(7):893–900. doi: 10.1054/arth.2001.24376.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirschmann MT, Davda K, Iranpour F, Rasch H, Friederich NF. Combined single photon emission computerised tomography and conventional computerised tomography (SPECT/CT) in patellofemoral disorders: a clinical review. Int Orthop 2011;35(5):675–80. doi: 10.1007/s00264-010-1049-x.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Hirschmann MT, Konala P, Iranpour F, Kerner A, Rasch H, Friederich NF. Clinical value of SPECT/CT for assessment of patients with painful knees after total knee arthroplasty—a new dimension of diagnostics? BMC Musculoskelet Disord 2011;12:36.Google Scholar
  22. 22.
    Ahmad R, Kumar GS, Katam K, Dunlop D, Pozo JL. Significance of a “hot patella” in total knee replacement without primary patellar resurfacing. Knee 2009;16(5):337–40. doi: 10.1016/j.knee.2009.02.001.CrossRefPubMedGoogle Scholar
  23. 23.
    Hirschmann MT, Konala P, Amsler F, Iranpour F, Friederich NF, Cobb JP. The position and orientation of total knee replacement components: a comparison of conventional radiographs, transverse 2D-CT slices and 3D-CT reconstruction. J Bone Joint Surg Br 2011;93(5):629–33. doi: 10.1302/0301-620X.93B5.25893.CrossRefPubMedGoogle Scholar
  24. 24.
    Hirschmann MT, Iranpour F, Konala P, Kerner A, Rasch H, Cobb JP, et al. A novel standardized algorithm for evaluating patients with painful total knee arthroplasty using combined single photon emission tomography and conventional computerized tomography. Knee Surg Sports Traumatol Arthrosc 2010;18(7):939–44. doi: 10.1007/s00167-010-1070-z.CrossRefPubMedGoogle Scholar
  25. 25.
    Srivastava A, Lee GY, Steklov N, Colwell Jr CW, Ezzet KA, D’Lima DD. Effect of tibial component varus on wear in total knee arthroplasty. Knee 2012;19(5):560–3. doi: 10.1016/j.knee.2011.11.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Matsuda S, Whiteside LA, White SE. The effect of varus tilt on contact stresses in total knee arthroplasty: a biomechanical study. Orthopedics 1999;22(3):303–7.PubMedGoogle Scholar
  27. 27.
    Green GV, Berend KR, Berend ME, Glisson RR, Vail TP. The effects of varus tibial alignment on proximal tibial surface strain in total knee arthroplasty: the posteromedial hot spot. J Arthroplasty 2002;17(8):1033–9. doi: 10.1054/arth.2002.35796.CrossRefPubMedGoogle Scholar
  28. 28.
    Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ. The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 2005;38(2):349–55. doi: 10.1016/j.jbiomech.2004.02.024.CrossRefPubMedGoogle Scholar
  29. 29.
    Perillo-Marcone A, Taylor M. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. J Biomech Eng 2007;129(1):1–11. doi: 10.1115/1.2401177.CrossRefPubMedGoogle Scholar
  30. 30.
    Hofmann S, Romero J, Roth-Schiffl E, Albrecht T. Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 2003;32(6):469–76. doi: 10.1007/s00132-003-0503-5.PubMedGoogle Scholar
  31. 31.
    Fehring TK. Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 2000;380:72–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuriyama S, Ishikawa M, Furu M, Ito H, Matsuda S. Malrotated tibial component increases medial collateral ligament tension in total knee arthroplasty. J Orthop Res 2014;32(12):1658–66. doi: 10.1002/jor.22711.CrossRefPubMedGoogle Scholar
  33. 33.
    Kessler O, Lacatusu E, Sommers MB, Mayr E, Bottlang M. Malrotation in total knee arthroplasty: effect on tibial cortex strain captured by laser-based strain acquisition. Clin Biomech (Bristol, Avon) 2006;21(6):603–9. doi: 10.1016/j.clinbiomech.2006.01.011.CrossRefGoogle Scholar
  34. 34.
    Petersen MM, Olsen C, Lauritzen JB, Lund B. Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. J Arthroplasty 1995;10(1):7–11.CrossRefPubMedGoogle Scholar
  35. 35.
    Petersen MM, Nielsen PT, Lebech A, Toksvig-Larsen S, Lund B. Preoperative bone mineral density of the proximal tibia and migration of the tibial component after uncemented total knee arthroplasty. J Arthroplasty 1999;14(1):77–81.CrossRefPubMedGoogle Scholar
  36. 36.
    van Loon CJ, Oyen WJ, de Waal Malefijt MC, Verdonschot N. Distal femoral bone mineral density after total knee arthroplasty: a comparison with general bone mineral density. Arch Orthop Trauma Surg 2001;121(5):282–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Li MG, Nilsson KG. Changes in bone mineral density at the proximal tibia after total knee arthroplasty: a 2-year follow-up of 28 knees using dual energy X-ray absorptiometry. J Orthop Res 2000;18(1):40–7. doi: 10.1002/jor.1100180107.CrossRefPubMedGoogle Scholar
  38. 38.
    Lonner JH, Klotz M, Levitz C, Lotke PA. Changes in bone density after cemented total knee arthroplasty: influence of stem design. J Arthroplasty 2001;16(1):107–11. doi: 10.1054/arth.2001.16486.CrossRefPubMedGoogle Scholar
  39. 39.
    Hernandez-Vaquero D, Garcia-Sandoval MA, Fernandez-Carreira JM, Gava R. Influence of the tibial stem design on bone density after cemented total knee arthroplasty: a prospective seven-year follow-up study. Int Orthop 2008;32(1):47–51. doi: 10.1007/s00264-006-0280-y.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Boyd Jr AD, Ewald FC, Thomas WH, Poss R, Sledge CB. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 1993;75(5):674–81.PubMedGoogle Scholar
  41. 41.
    Fitzpatrick CK, Baldwin MA, Ali AA, Laz PJ, Rullkoetter PJ. Comparison of patellar bone strain in the natural and implanted knee during simulated deep flexion. J Orthop Res 2011;29(2):232–9. doi: 10.1002/jor.21211.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michael T. Hirschmann
    • 1
  • Felix Amsler
    • 2
  • Helmut Rasch
    • 3
  1. 1.Department of Orthopaedic Surgery and TraumatologyKantonsspital Baselland (Bruderholz, Liestal, Laufen)BruderholzSwitzerland
  2. 2.Amsler ConsultingBaselSwitzerland
  3. 3.Institute of Radiology and Nuclear MedicineKantonsspital BasellandBruderholzSwitzerland

Personalised recommendations