Advertisement

Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

  • A. Lo Dico
  • C. Martelli
  • S. Valtorta
  • I. Raccagni
  • C. Diceglie
  • S. Belloli
  • U. Gianelli
  • V. Vaira
  • L. S. Politi
  • S. Bosari
  • G. Lucignani
  • R. M. MorescoEmail author
  • L. Ottobrini
Original Article

Abstract

Purpose

Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model.

Methods

U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging.

Results

This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action.

Conclusion

The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures.

Keywords

Temozolomide HIF-1alpha Optical imaging Biomarker CAIX 

Notes

Acknowledgments

Raccagni I. was supported by a fellowship from the Doctorate in Biomedical Technologies, Department of Health Sciences, University of Milan-Bicocca, Milan, Italy. The authors wish to thank Dr. S. Todde for production and control quality of radiotracers. The authors thank Fondazione IRCCS Ca’ Granda for allowing the use of the imaging system IVIS Spectrum/CT. This work was supported in part by FP7 funded INSERT project (HEALTH-2012-INNOVATION-1, GA305311) and by Fondazione IRCCS Ca’ Granda - Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM) grant in Molecular Medicine (2013 edition).

Conflicts of interest

None.

Supplementary material

259_2015_3040_MOESM1_ESM.pdf (101 kb)
Online Resource 1 (PDF 100 kb)
259_2015_3040_MOESM2_ESM.pdf (106 kb)
Online Resource 2 (PDF 106 kb)
259_2015_3040_MOESM3_ESM.pdf (164 kb)
Online Resource 3 (PDF 164 kb)

References

  1. 1.
    Jensen RL. Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures. Neurosurg Focus 2006;20(4):E24.CrossRefPubMedGoogle Scholar
  2. 2.
    Rankin EB, Rha J, Unger TL, Wu CH, Shutt HP, Johnson RS, et al. Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 2008;27(40):5354–8.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B, Bonomi CA, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res 2004;64(19):6845–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000;60(6):1541–5.PubMedGoogle Scholar
  5. 5.
    Chen Z, Htay A, Dos Santos W, Gillies GT, Fillmore HL, Sholley MM, et al. In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells. J Neurooncol 2009;92(2):121–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, et al. Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of bad in glioblastoma cells. Mol Pharmacol 2007;72(1):162–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Fruehauf JP, Brem H, Brem S, Sloan A, Barger G, Huang W, et al. In vitro drug response and molecular markers associated with drug resistance in malignant gliomas. Clin Cancer Res 2006;12(15):4523–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Ma J, Murphy M, O’Dwyer PJ, Berman E, Reed K, Gallo JM. Biochemical changes associated with a multidrug-resistant phenotype of a human glioma cell line with temozolomide-acquired resistance. Biochem Pharmacol 2002;63(7):1219–28.CrossRefPubMedGoogle Scholar
  9. 9.
    Hegi ME, Diserens A-C, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352:997–1003.CrossRefPubMedGoogle Scholar
  10. 10.
    Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 2004;11(4):448–57.CrossRefPubMedGoogle Scholar
  11. 11.
    Natsumeda M, Aoki H, Miyahara H, Yajima N, Uzuka T, Toyoshima Y, et al. Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 2011;31(5):486–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Shen W, Hu JA, Zheng JS. Mechanism of temozolomide-induced antitumour effects on glioma cells. J Int Med Res 2014;42(1):164–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. Current technology and perspectives for oncological imaging. Eur J Cancer 2002;38(16):2173–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Massoud TF, Gambhir SS. Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med 2007;13(5):183–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 2009;8(7):1867–77.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lohar MV, Mundada R, Bhonde M, Padgaonkar A, Deore V, Yewalkar N, et al. Design and synthesis of novel fluoroquinolone based inhibitors of multiple targets in the PI3K/Akt-mTOR pathway. Bioorg Med Chem Lett 2008;18(12):3603–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Creighton-Gutteridge M, Cardellina 2nd JH, Stephen AG, Rapisarda A, Uranchimeg B, Hite K, et al. Cell type-specific, topoisomerase II-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation by NSC 644221. Clin Cancer Res 2007;13(3):1010–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Persano L, Pistollato F, Rampazzo E, Della Puppa A, Abbadi S, Frasson C, et al. BMP2 sensitizes glioblastoma stem-like cells to temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis 2012;3:e412.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Lo Dico A, Valtorta S, Martelli C, Belloli S, Gianelli U, Tosi D, et al. Validation of an engineered cell model for in vitro and in vivo HIF-1α evaluation by different imaging modalities. Mol Imaging Biol 2014;16(2):210–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Kapoor GS, O’Rourke DM. Receptor tyrosine kinase signaling in gliomagenesis: pathobiology and therapeutic approaches. Cancer Biol Ther 2003;2(4):330–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008;7(7):1851–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 2011;3(3):192–222.PubMedCentralPubMedGoogle Scholar
  23. 23.
    See WL, Tan IL, Mukherjee J, Nicolaides T, Pieper RO. Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency. Cancer Res 2012;72(13):3350–9.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Glassmann A, Reichmann K, Scheffler B, Glas M, Veit N, Probstmeier R. Pharmacological targeting of the constitutively activated MEK/MAPK-dependent signaling pathway in glioma cells inhibits cell proliferation and migration. Int J Oncol 2011;39(6):1567–75.PubMedGoogle Scholar
  25. 25.
    A phase I/II study of BEZ235 in patients with advanced solid malignancies enriched by patients with advanced breast cancer. ClinicalTrial.gov Identifier number: NCT00620594.Google Scholar
  26. 26.
    Efficacy and safety of the combination therapy of dabrafenib and trametinib in subjects with BRAF V600E- mutated rare cancers. ClinicalTrial.gov Identifier number: NCT02034110.Google Scholar
  27. 27.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V, et al. In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 2009;91:127–39.CrossRefPubMedGoogle Scholar
  29. 29.
    Galldiks N, Kracht LW, Burghaus L, Ullrich RT, Backes H, Brunn A, et al. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging 2010;9(1):40–6.PubMedGoogle Scholar
  30. 30.
    Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A 2009;106:22299–304.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A, et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 2010;70(20):8097–107.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009;8:2204–10.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA, et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 2011;17:989–1000.Google Scholar
  34. 34.
    Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, et al. Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 2012;11(3):720–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Wick W, Weller M, Weiler M, Batchelor T, Yung AW, Platten M. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncol 2011;13(6):566–79.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A 1991;88(13):5680–4.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70(5):1469–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Welsh SJ, Koh MY, Powis G. The hypoxic inducible stress response as a target for cancer drug discovery. Semin Oncol 2006;33(4):486–97.CrossRefPubMedGoogle Scholar
  39. 39.
    Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer 2008;8(12):967–75.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Munoz JL, Rodriguez-Cruz V, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43. Cell Death Dis 2014;5:e1145.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Mathieu V, De Nève N, Le Mercier M, Dewelle J, Gaussin JF, Dehoux M, et al. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 2008;10(12):1383–92.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Vlachostergios PJ, Hatzidaki E, Befani CD, Liakos P, Papandreou CN. Bortezomib overcomes MGMT-related resistance of glioblastoma cell lines to temozolomide in a schedule-dependent manner. Invest New Drugs 2013;31(5):1169–81.CrossRefPubMedGoogle Scholar
  43. 43.
    Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med 2007;37(6):429–39.CrossRefPubMedGoogle Scholar
  44. 44.
    Schiepers C, Dahlbom M, Chen W, Cloughesy T, Czernin J, Phelps ME, et al. Kinetics of 3′-deoxy-3′-18F-fluorothymidine during treatment monitoring of recurrent high-grade glioma. J Nucl Med 2010;51(5):720–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003;9:677–84.CrossRefPubMedGoogle Scholar
  46. 46.
    Kaluz S, Kaluzová M, Liao SY, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta 2009;1795(2):162–72.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Hoeben BA, Kaanders JH, Franssen GM, Troost EG, Rijken PF, Oosterwijk E, et al. PET of hypoxia with 89Zr-labeled cG250-F(ab′)2 in head and neck tumors. J Nucl Med 2010;51(7):1076–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Lau J, Zhang Z, Hundal-Jabal N, Liu Z, Benard F, Lin KS. Synthesis and evaluation of monomeric, dimeric and trimeric benzenesulfonamide derivatives for imaging carbonic anhydrase IX with PET. J Nucl Med 2014;55(Suppl 1):444.Google Scholar
  49. 49.
    Surfus JE, Hank JA, Oosterwijk E, Welt S, Lindstrom MJ, Albertini MR, et al. Anti-renal-cell carcinoma chimeric antibody G250 facilitates antibody-dependent cellular cytotoxicity with in vitro and in vivo interleukin-2-activated effectors. J Immunother Emphasis Tumor Immunol 1996;19(3):184–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Bleumer I, Knuth A, Oosterwijk E, Hofmann R, Varga Z, Lamers C, et al. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. Br J Cancer 2004;90(5):985–90.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor-1α (HIF-1α) for lysosomal degradation. J Biol Chem 2013;288(15):10703–14.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Ferreira JV, Fôfo H, Bejarano E, Bento CF, Ramalho JS, Girão H, et al. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy 2013;9(9):1349–66.CrossRefPubMedGoogle Scholar
  53. 53.
    Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on chaperone-mediated autophagy. Autophagy 2005;1(3):141–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Yamaki H, Nakajima M, Seimiya H, Saya H, Sugita M, Tsuruo TJ. Inhibition of the association with nuclear matrix of pRB, p70 and p40 proteins along with the specific suppression of c-MYC expression by geldanamycin, an inhibitor of Src tyrosine kinase. J Antibiot 1995;48(9):1021–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Lo Dico
    • 1
    • 2
  • C. Martelli
    • 1
    • 2
  • S. Valtorta
    • 3
    • 4
  • I. Raccagni
    • 4
    • 5
  • C. Diceglie
    • 1
    • 6
  • S. Belloli
    • 3
    • 4
  • U. Gianelli
    • 1
    • 7
  • V. Vaira
    • 7
    • 8
  • L. S. Politi
    • 9
  • S. Bosari
    • 1
    • 7
  • G. Lucignani
    • 2
    • 10
    • 11
  • R. M. Moresco
    • 4
    • 5
    Email author
  • L. Ottobrini
    • 1
    • 2
    • 3
  1. 1.Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
  2. 2.Centre of Molecular and Cellular Imaging-IMAGOUniversity of MilanMilanItaly
  3. 3.Institute of Molecular Bioimaging and Physiology (IBFM)National Researches Council (CNR)SegrateItaly
  4. 4.Experimental Imaging CenterIRCCS San Raffaele Scientific InstituteMilanItaly
  5. 5.Department of Health SciencesUniversity of Milano-BicoccaMonzaItaly
  6. 6.Doctorate School of Molecular MedicineUniversity of MilanMilanItaly
  7. 7.Division of PathologyFondazione IRCCS Ca’ Granda-Ospedale Maggiore PoliclinicoMilanItaly
  8. 8.Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM)MilanItaly
  9. 9.Neuroradiology Department & Neuroradiology Research GroupIRCCS San Raffaele Scientific InstituteMilanItaly
  10. 10.Department of Health SciencesUniversity of MilanMilanItaly
  11. 11.Department of Diagnostic Services, Unit of Nuclear MedicineSan Paolo HospitalMilanItaly

Personalised recommendations