Brain 18F-DOPA PET and cognition in de novo Parkinson’s disease

  • Agnese Picco
  • Silvia Morbelli
  • Arnoldo Piccardo
  • Dario Arnaldi
  • Nicola Girtler
  • Andrea Brugnolo
  • Irene Bossert
  • Lucio Marinelli
  • Antonio Castaldi
  • Fabrizio De Carli
  • Claudio Campus
  • Giovanni Abbruzzese
  • Flavio Nobili
Original Article



The role of mesocortical dopaminergic pathways in the cognitive function of patients with early Parkinson’s disease (PD) needs to be further clarified.


The study groups comprised 15 drug-naive patients with de novo PD and 10 patients with essential tremor (controls) who underwent 18F-DOPA PET (static acquisition, normalization on mean cerebellar counts) and an extended neuropsychological test battery. Factor analysis with varimax rotation was applied to the neuropsychological test scores, to yield five factors from 16 original scores, which explained 82 % of the total variance. Correlations between cognitive factors and 18F-DOPA uptake were assessed with SPM8, taking age and gender as nuisance variables.


18F-DOPA uptake was significantly lower in PD patients than in controls in the bilateral striatum, mainly in the more affected (right) hemisphere, and in a small right temporal region. Significant positive correlations were found only in PD patients between the executive factor and 18F-DOPA uptake in the bilateral anterior cingulate cortex (ACC) and the middle frontal gyrus, between the verbal fluency factor and 18F-DOPA uptake in left BA 46 and the bilateral striatum, and between the visuospatial factor and 18F-DOPA uptake in the left ACC and bilateral striatum. No correlations were found between 18F-DOPA uptake and either the verbal memory factor or the abstraction–working memory factor.


These data clarify the role of the mesocortical dopaminergic pathways in cognitive function in early PD, highlighting the medial frontal lobe, anterior cingulate, and left BA 46 as the main sites of cortical correlation with executive and language functions.


18F-DOPA PET Parkinson’s disease Mesocortical pathway Cognitive impairment Neuropsychology 


Compliance with ethical standards


This was an unfunded study.

Conflicts of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Animal studies

This article does not describe any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

259_2015_3039_MOESM1_ESM.docx (19 kb)
Online Resource 1 (DOCX 18 kb)
259_2015_3039_MOESM2_ESM.docx (15 kb)
Online Resource 2 (DOCX 14 kb)
259_2015_3039_MOESM3_ESM.docx (14 kb)
Online Resource 3 (DOCX 14 kb)
259_2015_3039_MOESM4_ESM.docx (350 kb)
Online Resource 4 (DOCX 349 kb)
259_2015_3039_MOESM5_ESM.docx (351 kb)
Online Resource 5 (DOCX 351 kb)


  1. 1.
    Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9:1200–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Claassen DO, Wylie SA. Trends and issues in characterizing early cognitive changes in Parkinson’s disease. Curr Neurol Neurosci Rep. 2012;12:695–702.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Arnaldi D, Campus C, Ferrara M, et al. What predicts cognitive decline in de novo Parkinson’s disease? Neurobiol Aging. 2012;33:1127.e11–20.CrossRefGoogle Scholar
  4. 4.
    Olde Dubbelink KT, Hillebrand A, Twisk JW, et al. Predicting dementia in Parkinson disease by combining neurophysiologic and cognitive markers. Neurology. 2014;82:263–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Barone P. Neurotransmission in Parkinson’s disease: beyond dopamine. Eur J Neurol. 2010;17:364–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Brooks DJ, Pavese N. Imaging biomarkers in Parkinson’s disease. Prog Neurobiol. 2011;95:614–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11:79–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Marié RM, Barré L, Dupuy B, et al. Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neurosci Lett. 1999;260:77–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Rinne JO, Portin R, Ruottinen H, et al. Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol. 2000;57:470–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Brück A, Portin R, Lindell A, et al. Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett. 2001;311:81–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Cropley VL, Fujita M, Innis RB, et al. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry. 2006;59:898–907.CrossRefPubMedGoogle Scholar
  12. 12.
    van Beilen M, Leenders KL. Putamen FDOPA uptake and its relationship to cognitive functioning in PD. J Neurol Sci. 2006;248:68–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Jokinen P, Brück A, Aalto S, et al. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat Disord. 2009;15:88–93.CrossRefPubMedGoogle Scholar
  14. 14.
    Nobili F, Campus C, Arnaldi D, et al. Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov Disord. 2010;25:35–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Jokinen P, Karrasch M, Brück A, et al. Cognitive slowing in Parkinson’s disease is related to frontostriatal dopaminergic dysfunction. J Neurol Sci. 2013;329:23–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Holthoff VA, Vieregge P, Kessler J, et al. Discordant twins with Parkinson’s disease: positron emission tomography and early signs of impaired cognitive circuits. Ann Neurol. 1994;36:176–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Calvini P, Rodriguez G, Inguglia F, et al. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging. 2007;34:1240–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Eshuis SA, Jager PL, Maguire RP, et al. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging. 2009;36:454–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Pavese N, Rivero-Bosch M, Lewis SJ, Whone AL, Brooks DJ. Progression of monoaminergic dysfunction in Parkinson’s disease: a longitudinal 18F-dopa PET study. Neuroimage. 2011;56:1463–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Hirano S, Shinotoh H, Eidelberg D. Functional brain imaging of cognitive dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83:963–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Moore RY, Whone AL, Brooks DJ. Extrastriatal monoamine neuron function in Parkinson’s disease: an 18F-dopa PET study. Neurobiol Dis. 2008;29:381–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Nagano-Saito A, Kato T, Arahata Y, et al. Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. Neuroimage. 2004;22:553–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Brück A, Aalto S, Nurmi E, et al. Cortical 6-[18F]fluoro-L-dopa uptake and frontal cognitive functions in early Parkinson’s disease. Neurobiol Aging. 2005;26:891–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56:33–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Annett M. A classification of hand preference by association analysis. Br J Psychol. 1970;61:303–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Katz S, Downs TD, Cash HR, et al. Progress in development of the index of ADL. Gerontologist. 1970;10:20–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Deuschl G, Bain P, Brin M. Consensus statement of the movement disorder society on tremor. Ad hoc scientific committee. Mov Disord. 1998;13 Suppl 3:2–23.PubMedGoogle Scholar
  29. 29.
    Brooks DJ, Playford ED, Ibanez V, et al. Isolated tremor and disruption of the nigrostriatal dopaminergic system: an 18F-dopa PET study. Neurology. 1992;42:1554–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Walterfang M, van de Warrenburg BP. Cognitive impairment in "Other" movement disorders: hidden defects and valuable clues. Mov Disord. 2014;29:694–703.CrossRefPubMedGoogle Scholar
  31. 31.
    Kumakura Y, Cumming P. PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist. 2009;15:635–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Ishikawa T, Dhawan V, Chaly T, et al. Clinical significance of striatal DOPA decarboxylase activity in Parkinson’s disease. J Nucl Med. 1996;37:216–22.PubMedGoogle Scholar
  33. 33.
    Dhawan V, Ma Y, Pillai V, et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method versus graphical approach. J Nucl Med. 2002;43:1324–30.PubMedGoogle Scholar
  34. 34.
    Jokinen P, Helenius H, Rauhala E, et al. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J Nucl Med. 2009;50:893–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Jaimini A, Tripathi M, D’Souza MM, et al. Utility of intrastriatal ratios of FDOPA to differentiate idiopathic Parkinson’s disease from atypical parkinsonian disorders. Nucl Med Commun. 2013;34:426–31.CrossRefPubMedGoogle Scholar
  36. 36.
    Eshuis SA, Maguire RP, Leenders KL, et al. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2006;33:200–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Gispert JD, Pascau J, Reig S, et al. Influence of the normalization template on the outcome of statistical parametric mapping of PET scans. Neuroimage. 2003;19:601–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Scherfler C, Khan NL, Pavese N, et al. Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain. 2004;127:1332–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheesman AL, Barker RA, Lewis SJ, et al. Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1204–10.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Oishi N, Udaka F, Kameyama M, et al. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.CrossRefPubMedGoogle Scholar
  41. 41.
    Eickhoff SB, Laird AR, Grefkes C, et al. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30:2907–26.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Floresco SB. Prefrontal dopamine and behavioral flexibility: shifting from an "inverted-U" toward a family of functions. Front Neurosci. 2013;7:62.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Fleury V, Cousin E, Czernecki V, et al. Dopaminergic modulation of emotional conflict in Parkinson’s disease. Front Aging Neurosci. 2014;6:164.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci. 1991;14:21–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Tinaz S, Schendan HE, Stern CE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging. 2008;29:397–407.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Ellfolk U, Joutsa J, Rinne JO, et al. Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early Parkinson’s disease. J Neural Transm. 2014;121:33–40.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Ullman MT. Is Broca’s area part of a basal ganglia thalamocortical circuit? Cortex. 2006;42:480–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Nobili F, Arnaldi D, Campus C, et al. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2011;38:2209–18.CrossRefPubMedGoogle Scholar
  49. 49.
    Tomasi D, Volkow ND, Wang R, et al. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. PLoS One. 2009;4:e6102.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Manganelli F, Vitale C, Santangelo G, et al. Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s disease. Brain. 2009;132:2350–5.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Broussolle E, Dentresangle C, Landais P, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J Neurol Sci. 1999;166:141–51.CrossRefPubMedGoogle Scholar
  52. 52.
    Polito C, Berti V, Ramat S, et al. Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease. Neurobiol Aging. 2012;33:206.e29–39.CrossRefGoogle Scholar
  53. 53.
    Klein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74:885–92.CrossRefPubMedGoogle Scholar
  54. 54.
    Rakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson’s disease. A 3D [(18)F]dopa-PET study. Brain. 1999;122:1637–50.CrossRefPubMedGoogle Scholar
  55. 55.
    Kaasinen V, Nurmi E, Brück A, et al. Increased frontal [(18)F]fluorodopa uptake in early Parkinson’s disease: sex differences in the prefrontal cortex. Brain. 2001;124:1125–30.CrossRefPubMedGoogle Scholar
  56. 56.
    Brück A, Aalto S, Nurmi E, et al. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early Parkinson’s disease: a two-year follow-up study. Mov Disord. 2006;21:958–63.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Agnese Picco
    • 1
  • Silvia Morbelli
    • 2
  • Arnoldo Piccardo
    • 3
  • Dario Arnaldi
    • 1
  • Nicola Girtler
    • 1
    • 4
  • Andrea Brugnolo
    • 1
  • Irene Bossert
    • 2
  • Lucio Marinelli
    • 5
  • Antonio Castaldi
    • 6
  • Fabrizio De Carli
    • 7
  • Claudio Campus
    • 8
  • Giovanni Abbruzzese
    • 5
  • Flavio Nobili
    • 1
  1. 1.Clinical Neurology, Department of Neuroscience (DINOGMI)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  2. 2.Nuclear Medicine, Department of Health Sciences (DISSAL)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  3. 3.Nuclear Medicine, Department of Imaging DiagnosticsOspedali GallieraGenoaItaly
  4. 4.Clinical Psychology and Psychotherapy UnitIRCCS San Martino–ISTGenoaItaly
  5. 5.Neurological Rehabilitation, Department of Neuroscience (DINOGMI)University of Genoa and IRCCS AOU San Martino-ISTGenoaItaly
  6. 6.Radiology, Department of Imaging DiagnosticsOspedali GallieraGenoaItaly
  7. 7.Institute of Bioimaging and Molecular PhysiologyConsiglio Nazionale delle Ricerche (CNR)GenoaItaly
  8. 8.Istituto Italiano di TecnologiaGenoaItaly

Personalised recommendations