Advertisement

Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging

  • Osamu Manabe
  • Naoya Hattori
  • Shigeru Yamaguchi
  • Kenji Hirata
  • Kentaro Kobayashi
  • Shunsuke Terasaka
  • Hiroyuki Kobayashi
  • Hiroaki Motegi
  • Tohru Shiga
  • Keiichi Magota
  • Noriko Oyama-Manabe
  • Ken-ichi Nishijima
  • Yuji Kuge
  • Nagara Tamaki
Original Article

Abstract

Purpose

Previous radiological investigations have generally shown the superiority of metabolic imaging in distinguishing high-grade from low-grade glioma, but the presence of an oligodendroglial component may affect the diagnostic accuracy. We investigated the diagnostic accuracy of PET imaging using 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) in distinguishing high-grade from low-grade glioma, in correlation with the oligodendroglial component.

Methods

The study population comprised adult patients who underwent preoperative PET imaging using both MET and FDG within 1 week and successful excision of the tumour tissue, which confirmed WHO grade II–IV glioma. We examined the tumour metabolic activity in terms of lesion-to-normal uptake ratios (L/N ratio) in both MET PET and FDG PET images. We assessed the correlation between the imaging results and the histological findings to determine the diagnostic accuracy of receiver operating characteristics (ROC) analysis in detecting high-grade tumours.

Results

We studied 46 patients with glioma (13 low-grade and 33 high-grade), including 26 with an oligodendroglial components. The L/N ratios of the PET images showed significantly higher metabolic activities in high-grade gliomas than in low-grade gliomas for both MET (4.29 ± 1.22 and 2.36 ± 0.72, respectively; p < 0.0001) and FDG (1.72 ± 0.91 and 0.77 ± 0.26, respectively; p = 0.0007) images, although significant overlaps in L/N ratio were observed between high-grade and low-grade gliomas. Excluding the 26 patents with an oligodendroglial component improved the separation for both MET (4.62 ± 1.14 vs. 2.16 ± 0.63; p < 0.001) and FDG (1.76 ± 0.87 vs. 0.71 ± 0.14; p < 0.05) images. The ROC analyses demonstrated the clinical utility of the metabolic radiotracers in distinguishing high-grade from low-grade gliomas, showing similar AUC values for MET (0.91) and FDG (0.92). Excluding the 26 patents with an oligodendroglial component also further improved the diagnostic accuracy for both MET (AUC 0.98), and FDG (AUC 1.00) images. The metabolic radiotracers were significantly correlated with the MIB-1 labelling index (R = 0.52, p < 0.05 for MET; R = 0.52, p < 0.05, for FDG) only in gliomas without an oligodendroglial component.

Conclusion

For better characterization of gliomas and for risk assessment, the results of metabolic PET imaging should be revised after obtaining the pathological report, because oligodendroglial differentiation may positively influence the substrate metabolism and thus complicated the preoperative evaluation.

Keywords

Glioma Oligodendroglial component FDG Methionine PET 

Notes

Acknowledgments

We thank Shigeo Oomagari, MSc, and Eriko Suzuki for their support.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committees and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Financial support

None.

Conflicts of interest

None.

References

  1. 1.
    Pirotte B, Goldman S, Dewitte O, Massager N, Wikler D, Lefranc F, et al. Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg. 2006;104(2):238–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Yamamoto Y, Nishiyama Y, Kimura N, Kameyama R, Kawai N, Hatakeyama T, et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imaging Biol. 2008;10(5):281–7.CrossRefPubMedGoogle Scholar
  3. 3.
    De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95(5):746–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Herholz K, Holzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50(5):1316–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Kato T, Shinoda J, Oka N, Miwa K, Nakayama N, Yano H, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol. 2008;29(10):1867–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Nojiri T, Nariai T, Aoyagi M, Senda M, Ishii K, Ishiwata K, et al. Contributions of biological tumor parameters to the incorporation rate of L-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol. 2009;93(2):233–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Dähnert W. Radiology review manual (Dahnert, Radiology review manual). Philadelphia, Pa: Lippincott Williams & Wilkins; 2011.Google Scholar
  8. 8.
    Yamaguchi S, Kobayashi H, Hirata K, Shiga T, Tanaka S, Murata J, et al. Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with (18)F-FDG and (11)C-methionine: report of two cases. J Neurooncol. 2011;101(2):335–41.CrossRefPubMedGoogle Scholar
  9. 9.
    Burger P, Scheithauer B. Diagnostic pathology: neuropathology. Philadelphia, Pa: Lippincott Williams & Wilkins; 2012. p. 800.Google Scholar
  10. 10.
    Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H, et al. 18F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging. 2012;39(5):760–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Delbeke D, Videlefsky S, Patton JA, Campbell MG, Martin WH, Ohana I, et al. Rest myocardial perfusion/metabolism imaging using simultaneous dual-isotope acquisition SPECT with technetium-99m-MIBI/fluorine-18-FDG. J Nucl Med. 1995;36(11):2110–9.PubMedGoogle Scholar
  12. 12.
    Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29(2):176–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishiwata K, et al. Usefulness of L-[methyl-11C]methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg. 2005;103(3):498–507.CrossRefPubMedGoogle Scholar
  14. 14.
    Sadeghi N, Salmon I, Decaestecker C, Levivier M, Metens T, Wikler D, et al. Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. AJNR Am J Neuroradiol. 2007;28(3):455–61.PubMedGoogle Scholar
  15. 15.
    Sasaki M, Kuwabara Y, Yoshida T, Nakagawa M, Fukumura T, Mihara F, et al. A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med. 1998;25(9):1261–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sato N, Suzuki M, Kuwata N, Kuroda K, Wada T, Beppu T, et al. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev. 1999;22:210–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Shinozaki N, Uchino Y, Yoshikawa K, Matsutani T, Hasegawa A, Saeki N, et al. Discrimination between low-grade oligodendrogliomas and diffuse astrocytoma with the aid of 11C-methionine positron emission tomography. J Neurosurg. 2011;114(6):1640–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol. 2006;27(7):1432–7.PubMedGoogle Scholar
  19. 19.
    Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, et al. [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol. 2010;96(2):231–9.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S. Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med. 2005;19(8):677–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Christov C, Adle-Biassette H, Le Guerinel C, Natchev S, Gherardi RK. Immunohistochemical detection of vascular endothelial growth factor (VEGF) in the vasculature of oligodendrogliomas. Neuropathol Appl Neurobiol. 1998;24(1):29–35.CrossRefPubMedGoogle Scholar
  22. 22.
    Saito T, Maruyama T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol. 2013;34(1):85–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Coons SW, Johnson PC. Regional heterogeneity in the DNA content of human gliomas. Cancer. 1993;72(10):3052–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2005;32(1):52–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson RJ, Fuller GN, Abi-Said D, Lang FF, Gokaslan ZL, Shi WM, et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro Oncol. 2001;3(3):193–200.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Ino Y, Betensky RA, Zlatescu MC, Sasaki H, Macdonald DR, Stemmer-Rachamimov AO, et al. Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res. 2001;7(4):839–45.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Osamu Manabe
    • 1
  • Naoya Hattori
    • 1
  • Shigeru Yamaguchi
    • 2
  • Kenji Hirata
    • 1
  • Kentaro Kobayashi
    • 1
  • Shunsuke Terasaka
    • 2
  • Hiroyuki Kobayashi
    • 2
  • Hiroaki Motegi
    • 2
  • Tohru Shiga
    • 1
  • Keiichi Magota
    • 1
  • Noriko Oyama-Manabe
    • 3
  • Ken-ichi Nishijima
    • 4
    • 5
  • Yuji Kuge
    • 4
    • 5
  • Nagara Tamaki
    • 1
  1. 1.Department of Nuclear MedicineHokkaido University Graduate School of MedicineSapporoJapan
  2. 2.Department of NeurosurgeryHokkaido University HospitalSapporoJapan
  3. 3.Department of Diagnostic and Interventional RadiologyHokkaido University HospitalSapporoJapan
  4. 4.Department of Integrated Molecular Imaging, Graduate School of MedicineHokkaido UniversitySapporoJapan
  5. 5.Central Institute of Isotope ScienceHokkaido UniversitySapporoJapan

Personalised recommendations