Advertisement

Visual and statistical analysis of 18F-FDG PET in primary progressive aphasia

  • Jordi A. Matías-GuiuEmail author
  • María Nieves Cabrera-Martín
  • María Jesús Pérez-Castejón
  • Teresa Moreno-Ramos
  • Cristina Rodríguez-Rey
  • Rocío García-Ramos
  • Aida Ortega-Candil
  • Marta Fernandez-Matarrubia
  • Celia Oreja-Guevara
  • Jorge Matías-Guiu
  • José Luis Carreras
Original Article

Abstract

Purpose

Diagnosing progressive primary aphasia (PPA) and its variants is of great clinical importance, and fluorodeoxyglucose (FDG) positron emission tomography (PET) may be a useful diagnostic technique. The purpose of this study was to evaluate interobserver variability in the interpretation of FDG PET images in PPA as well as the diagnostic sensitivity and specificity of the technique. We also aimed to compare visual and statistical analyses of these images.

Methods

There were 10 raters who analysed 44 FDG PET scans from 33 PPA patients and 11 controls. Five raters analysed the images visually, while the other five used maps created using Statistical Parametric Mapping software. Two spatial normalization procedures were performed: global mean normalization and cerebellar normalization. Clinical diagnosis was considered the gold standard.

Results

Inter-rater concordance was moderate for visual analysis (Fleiss’ kappa 0.568) and substantial for statistical analysis (kappa 0.756–0.881). Agreement was good for all three variants of PPA except for the nonfluent/agrammatic variant studied with visual analysis. The sensitivity and specificity of each rater’s diagnosis of PPA was high, averaging 87.8 and 89.9 % for visual analysis and 96.9 and 90.9 % for statistical analysis using global mean normalization, respectively. In cerebellar normalization, sensitivity was 88.9 % and specificity 100 %.

Conclusion

FDG PET demonstrated high diagnostic accuracy for the diagnosis of PPA and its variants. Inter-rater concordance was higher for statistical analysis, especially for the nonfluent/agrammatic variant. These data support the use of FDG PET to evaluate patients with PPA and show that statistical analysis methods are particularly useful for identifying the nonfluent/agrammatic variant of PPA.

Keywords

18F-FDG PET Brain imaging Primary progressive aphasia Statistical Parametric Mapping 

Notes

Compliance with ethical standards

All procedures performed involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki Declaration and its later amendments.

Conflicts of interest

None.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

259_2015_2994_MOESM1_ESM.docx (92 kb)
ESM 1 (DOCX 92 kb)

References

  1. 1.
    Mesulam MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merrit Lecture. Neurology 2013;81:456–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Matías-Guiu JA, García-Ramos R. Primary progressive aphasia: from syndrome to disease. Neurologia 2013;28:366–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006–14.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol 2007;80(2):S160–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Bohnen NI, Djang DSW, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 2012;53:59–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Fernández-Matarrubia M, Matias-Guiu JA, Moreno-Ramos T, Matias-Guiu J. Biomarkers: a new approach to behavioural variant frontotemporal dementia. Neurologia 2013. doi: 10.1016/j.nrl.2013.03.002.Google Scholar
  7. 7.
    Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335–56.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Josephs KA, Duffy JR, Fosset TR, Strand EA, Claassen DO, Whitewell JL, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia. Arch Neurol 2010;67:596–605.CrossRefPubMedGoogle Scholar
  9. 9.
    Clark DG, Charuvastra A, Miller BL, Shapira JS, Mendez MF. Fluent versus nonfluent primary progressive aphasia: a comparison of clinical and functional neuroimaging features. Brain Lang 2005;94:54–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Perneczky R, Diehl-Schmid J, Pohl C, Drzezga A, Kurz A. Non-fluent progressive aphasia: cerebral metabolic patterns and brain reserve. Brain Res 2007;1133:178–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC, et al. Abeta amyloid and glucose metabolism in the three variants of primary progressive aphasia. Ann Neurol 2008;64:388–401.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Panegyres PK, McCarthy M, Campbell A, Lenzo N, Fallon M, Thompson J. Correlative studies of structural and functional imaging in primary progressive aphasia. Am J Alzheimers Dis Other Demen 2008;23:184–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76:1804–10.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lehman VT, Carter RE, Claasen DO, Murphy RC, Lowe V, Petersen RC, et al. Visual assessment versus quantitative three-dimensional sterotactic surface projection fluorodeoxyglucose positron emission tomography for detection of mild cognitive impairment and Alzheimer disease. Clin Nucl Med 2012;37:721–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Yamame T, Ikari Y, Nishio T, Ishii K, Ishii K, Kato T, et al. Visual-statistical interpretation of (18)F-FDG-PET images for characteristic Alzheimer patterns in a multicenter study: inter-rater concordance and relationship to automated quantitative evaluation. AJNR Am J Neuroradiol 2014;35:244–9.CrossRefGoogle Scholar
  16. 16.
    Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 2007;48:547–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Arbizu J, Prieto E, Martínez-Lage P, Martí-Climent JM, García-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease and dementia. Eur J Nucl Med Mol Imaging 2013;40:1394–405.CrossRefPubMedGoogle Scholar
  18. 18.
    Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Ashburner J, Friston JK. Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage 2010;49:1490–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273–89.CrossRefPubMedGoogle Scholar
  22. 22.
    Wicklund MR, Duffy JR, Strand EA, Machulda MM, Whitwell JL, Josephs KA. Quantitative application of the primary progressive aphasia consensus criteria. Neurology 2014;82:1119–26.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Sajjadi SA, Patterson K, Arnold RJ, Watson PC, Nestor PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 2012;78:1670–7.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.CrossRefPubMedGoogle Scholar
  25. 25.
    Burdette JH, Minoshima S, Vander Borght T, Tran DD, Kuhl DE. Alzheimer disease: improved visual interpretation of PET images using three-dimensional stereotaxic surface projections. Radiology 1996;198:837–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Womack KB, Diaz-Arrastia R, Aizenstein HJ, Arnold SE, Barbas NR, Boeve BF, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors. Arch Neurol 2011;68:329–7.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Silverman DH. PET in the evaluation of Alzheimer’s disease and related disorders. New York: Springer; 2009.CrossRefGoogle Scholar
  28. 28.
    Le Rhun E, Richard F, Pasquier F. Natural history of primary progressive aphasia. Neurology 2005;65:887–91.CrossRefPubMedGoogle Scholar
  29. 29.
    Yakushev I, Landvogt C, Buchholz HG, Fellgiebel A, Hammers A, Scheurich A, et al. Choice of reference area in studies of Alzheimer’s disease using positron emission tomography with fluorodeoxyglucose-F18. Psychiatry Res 2008;164:143–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Yakushev I, Hammers A, Fellgiebel A, Schmidtmann I, Scheurich A, Buchholz HG, et al. SPM-based count normalization provides excellent discrimination of mild Alzheimer’s disease and amnestic mild cognitive impairment from healthy aging. Neuroimage 2009;44:43–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Dukart J, Perneczky R, Förster S, Barthel H, Diehl-Schmid J, Draganski B, et al. Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET. PLoS One 2013;8:e55415.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Küntzelmann A, Guenther T, Haberkorn U, Essig M, Giesel F, Henze R, et al. Impaired cerebral glucose metabolism in prodromal Alzheimer’s disease differs by regional intensity normalization. Neurosci Lett 2013;534:12–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin 2014;6:445–54.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76:1804–10.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Matias-Guiu JA, Cabrera-Martín MN, García-Ramos R, Moreno-Ramos T, Valles-Salgado M, Carreras JL, et al. Evaluation of the new consensus criteria for the diagnosis of primary progressive aphasia using fluorodeoxyglucose positron emission tomography. Dement Geriatr Cogn Disord 2014;38:147–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jordi A. Matías-Guiu
    • 1
    Email author
  • María Nieves Cabrera-Martín
    • 2
  • María Jesús Pérez-Castejón
    • 2
  • Teresa Moreno-Ramos
    • 1
  • Cristina Rodríguez-Rey
    • 2
  • Rocío García-Ramos
    • 1
  • Aida Ortega-Candil
    • 2
  • Marta Fernandez-Matarrubia
    • 1
  • Celia Oreja-Guevara
    • 1
  • Jorge Matías-Guiu
    • 1
  • José Luis Carreras
    • 2
  1. 1.Department of NeurologyHospital Clínico San CarlosMadridSpain
  2. 2.Department of Nuclear Medicine, Hospital Clínico San CarlosSan Carlos Health Research Institute (IdISSC) Complutense University of MadridMadridSpain

Personalised recommendations