Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors

  • Lisa Bodei
  • Mark Kidd
  • Giovanni Paganelli
  • Chiara M. Grana
  • Ignat Drozdov
  • Marta Cremonesi
  • Christopher Lepensky
  • Dik J. Kwekkeboom
  • Richard P. Baum
  • Eric P.  Krenning
  • Irvin M. Modlin
Original Article



Peptide receptor radionuclide therapy (PRRT) with 90Y and 177Lu provides objective responses in neuroendocrine tumours, and is well tolerated with moderate toxicity. We aimed to identify clinical parameters predictive of long-term renal and haematological toxicity (myelodysplastic syndrome and acute leukaemia).


Of 807 patients studied at IEO-Milan (1997–2013), 793 (98 %) received 177Lu (278, 34.4 %), 90Y (358, 44.4 %) or 177Lu and 90Y combined (157. 19.5 %), and 14 (2 %) received combinations of PRRT and other agents. Follow-up was 30 months (1–180 months). The parameters evaluated included renal risk factors, bone marrow toxicity and PRRT features. Data analysis included multiple regression, random forest feature selection, and recursive partitioning and regression trees.


Treatment with 90Y and 90Y + 177Lu was more likely to result in nephrotoxicity than treatment with 177Lu alone (33.6 %, 25.5 % and 13.4 % of patients, respectively; p < 0.0001). Nephrotoxicity (any grade), transient and persistent, occurred in 279 patients (34.6 %) and was severe (grade 3 + 4) in 12 (1.5 %). In only 20–27 % of any nephrotoxicity was the disease modelled by risk factors and codependent associations (p < 0.0001). Hypertension and haemoglobin toxicity were the most relevant factors. Persistent toxicity occurred in 197 patients (24.3 %). In only 22–34 % of affected patients was the disease modelled by the clinical data (p < 0.0001). Hypertension (regression coefficient 0.14, p < 0.0001) and haemoglobin toxicity (regression coefficient 0.21, p < 0.0001) were pertinent factors. Persistent toxicity was associated with shorter PRRT duration from the first to the last cycle (mean 387 vs. 658 days, p < 0.004). Myelodysplastic syndrome occurred in 2.35 % of patients (modelled by the clinical data in 30 %, p < 0.0001). Platelet toxicity grade (2.05 ± 1.2 vs. 0.58 ± 0.8, p < 0.0001) and longer PRRT duration (22.6 ± 24 vs. 15.5 ± 9 months, p = 0.01) were relevant. Acute leukaemia occurred in 1.1 % of patients (modelled by the clinical data in 18 %, p < 0.0001).


Identified risk factors provide a limited (<30 %) risk estimate even with target tissue dosimetry. These data strongly suggest the existence of unidentified individual susceptibilities to radiation-associated disease.


PRRT NET Bone marrow toxicity Nephrotoxicity Decision tree analysis 


Conflicts of interest

G.P. is consultant for AAA. D.J.K. and E.P.K. are shareholders of AAA and steering committee members of AAA's NETTER-1 study. The other authors declare no conflicts of interest.


  1. 1.
    Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46 Suppl 1:62s–6s.PubMedGoogle Scholar
  2. 2.
    Bodei L, Ferone D, Grana CM, Cremonesi M, Signore A, Dierckx RA, et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest. 2009;32:360–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38:2125–35. doi: 10.1007/s00259-011-1902-1.PubMedCrossRefGoogle Scholar
  4. 4.
    Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29:2416–23. doi: 10.1200/jco.2010.33.7873.PubMedCrossRefGoogle Scholar
  5. 5.
    Bushnell Jr DL, O’Dorisio TM, O’Dorisio MS, Menda Y, Hicks RJ, Van Cutsem E, et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol. 2010;28:1652–9. doi: 10.1200/jco.2009.22.8585.PubMedCrossRefGoogle Scholar
  6. 6.
    Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23:2754–62. doi: 10.1200/jco.2005.08.066.PubMedCrossRefGoogle Scholar
  7. 7.
    Khan S, Krenning EP, van Essen M, Kam BL, Teunissen JJ, Kwekkeboom DJ. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med. 2011;52:1361–8. doi: 10.2967/jnumed.111.087932.PubMedCrossRefGoogle Scholar
  8. 8.
    Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30. doi: 10.1200/jco.2007.15.2553.PubMedCrossRefGoogle Scholar
  9. 9.
    Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, et al. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:R53–73. doi: 10.1677/erc-09-0078.PubMedCrossRefGoogle Scholar
  10. 10.
    Frilling A, Modlin IM, Kidd M, Russell C, Breitenstein S, Salem R, et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol. 2014;15:e8–e21. doi: 10.1016/s1470-2045(13)70362-0.PubMedCrossRefGoogle Scholar
  11. 11.
    Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJ, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86. doi: 10.1007/s00259-006-0338-5.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rolleman EJ, Kooij PP, de Herder WW, Valkema R, Krenning EP, de Jong M. Somatostatin receptor subtype 2-mediated uptake of radiolabelled somatostatin analogues in the human kidney. Eur J Nucl Med Mol Imaging. 2007;34:1854–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35:1847–56. doi: 10.1007/s00259-008-0778-1.PubMedCrossRefGoogle Scholar
  14. 14.
    Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46 Suppl 1:83s–91s.PubMedGoogle Scholar
  15. 15.
    Churpek JE, Larson RA. The evolving challenge of therapy-related myeloid neoplasms. Best Pract Res Clin Haematol. 2013;26:309–17. doi: 10.1016/j.beha.2013.09.001.PubMedCrossRefGoogle Scholar
  16. 16.
    Dottorini ME, Salvatori M. Is radioiodine treatment for thyroid cancer a risk factor for second primary malignancies? Clin Transl Imaging. 2013;1:205–16. doi: 10.1007/s40336-013-0022-2.
  17. 17.
    Vegt E, de Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51:1049–58. doi: 10.2967/jnumed.110.075101.PubMedCrossRefGoogle Scholar
  18. 18.
    Therneau T, Atkinson B, Ripley B. rpart: Recursive partitioning and regression times. 2014.
  19. 19.
    Cremonesi M, Ferrari M, Di Dia A, Botta F, De Cicco C, Bodei L, et al. Recent issues on dosimetry and radiobiology for peptide receptor radionuclide therapy. Q J Nucl Med Mol Imaging. 2011;55:155–67.PubMedGoogle Scholar
  20. 20.
    Paganelli G, Sansovini M, Ambrosetti A, Severi S, Monti M, Scarpi E, et al. 177Lu-Dota-octreotate radionuclide therapy of advanced gastrointestinal neuroendocrine tumors: results from a phase II study. Eur J Nucl Med Mol Imaging. 2014. doi: 10.1007/s00259-014-2735-5.
  21. 21.
    Cybulla M, Weiner SM, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med. 2001;28:1552–4. doi: 10.1007/s002590100599.PubMedCrossRefGoogle Scholar
  22. 22.
    Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflugers Arch. 2007;455:397–429. doi: 10.1007/s00424-007-0308-1.PubMedCrossRefGoogle Scholar
  23. 23.
    Strigari L, Benassi M, Chiesa C, Cremonesi M, Bodei L, D’Andrea M. Dosimetry in nuclear medicine therapy: radiobiology application and results. Q J Nucl Med Mol Imaging. 2011;55:205–21.PubMedGoogle Scholar
  24. 24.
    Lane BR, Poggio ED, Herts BR, Novick AC, Campbell SC. Renal function assessment in the era of chronic kidney disease: renewed emphasis on renal function centered patient care. J Urol. 2009;182:435–43. doi: 10.1016/j.juro.2009.04.004. discussion 43–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Sabet A, Ezziddin K, Pape UF, Reichman K, Haslerud T, Ahmadzadehfar H, et al. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with (177)Lu-octreotate. Eur J Nucl Med Mol Imaging. 2014;41:505–10. doi: 10.1007/s00259-013-2601-x.PubMedCrossRefGoogle Scholar
  26. 26.
    Cremonesi M, Botta F, Di Dia A, Ferrari M, Bodei L, De Cicco C, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010;54:37–51.PubMedGoogle Scholar
  27. 27.
    Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38:1270–80. doi: 10.1007/s00259-011-1744-x.PubMedCrossRefGoogle Scholar
  28. 28.
    Schroeder T, Kuendgen A, Kayser S, Kroger N, Braulke F, Platzbecker U, et al. Therapy-related myeloid neoplasms following treatment with radioiodine. Haematologica. 2012;97:206–12. doi: 10.3324/haematol.2011.049114.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35:418–29. doi: 10.1053/j.seminoncol.2008.04.012.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Boehrer S, Ades L, Tajeddine N, Hofmann WK, Kriener S, Bug G, et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene. 2009;28:2205–18. doi: 10.1038/onc.2009.69.PubMedCrossRefGoogle Scholar
  31. 31.
    Kayser S, Dohner K, Krauter J, Kohne CH, Horst HA, Held G, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117:2137–45. doi: 10.1182/blood-2010-08-301713.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lisa Bodei
    • 1
  • Mark Kidd
    • 2
  • Giovanni Paganelli
    • 3
  • Chiara M. Grana
    • 1
  • Ignat Drozdov
    • 2
  • Marta Cremonesi
    • 4
  • Christopher Lepensky
    • 2
  • Dik J. Kwekkeboom
    • 5
  • Richard P. Baum
    • 6
  • Eric P.  Krenning
    • 5
  • Irvin M. Modlin
    • 2
  1. 1.Division of Nuclear MedicineEuropean Institute of OncologyMilanItaly
  2. 2.Department of SurgeryYale School of MedicineNew HavenUSA
  3. 3.Nuclear Medicine and Radiometabolic UnitsIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly
  4. 4.Division of Medical PhysicsEuropean Institute of OncologyMilanItaly
  5. 5.Department of Nuclear MedicineErasmus Medical CenterRotterdamThe Netherlands
  6. 6.Theranostics Center for Molecular Radiotheraphy and Molecular ImagingZentralklinik Bad BerkaBad BerkaGermany

Personalised recommendations