Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [123I]FP-CIT SPECT

  • I. Huertas-Fernández
  • F. J. García-Gómez
  • D. García-Solís
  • S. Benítez-Rivero
  • V. A. Marín-Oyaga
  • S. Jesús
  • M. T. Cáceres-Redondo
  • J. A. Lojo
  • J. F. Martín-Rodríguez
  • F. Carrillo
  • P. Mir
Original Article

Abstract

Purpose

The study’s objective was to develop diagnostic predictive models using data from two commonly used [123I]FP-CIT SPECT assessment methods: region-of-interest (ROI) analysis and whole-brain voxel-based analysis.

Methods

We included retrospectively 80 patients with vascular parkinsonism (VP) and 164 patients with Parkinson’s disease (PD) who underwent [123I]FP-CIT SPECT. Nuclear-medicine specialists evaluated the scans and calculated bilateral caudate and putamen [123I]FP-CIT uptake and asymmetry indices using BRASS software. Statistical parametric mapping (SPM) was used to compare the radioligand uptake between the two diseases at the voxel level. Quantitative data from these two methods, together with potential confounding factors for dopamine transporter availability (sex, age, disease duration and severity), were used to build predictive models following a tenfold cross-validation scheme. The performance of logistic regression (LR), linear discriminant analysis and support vector machine (SVM) algorithms for ROI data, and their penalized versions for SPM data (penalized LR, penalized discriminant analysis and SVM), were assessed.

Results

Significant differences were found in the ROI analysis after covariate correction between VP and PD patients in [123I]FP-CIT uptake in the more affected side of the putamen and the ipsilateral caudate. Age, disease duration and severity were also found to be informative in feeding the statistical model. SPM localized significant reductions in [123I]FP-CIT uptake in PD with respect to VP in two specular clusters comprising areas corresponding to the left and right striatum. The diagnostic predictive accuracy of the LR model using ROI data was 90.3 % and of the SVM model using SPM data was 90.4 %.

Conclusion

The predictive models built with ROI data and SPM data from [123I]FP-CIT SPECT provide great discrimination accuracy between VP and PD. External validation of these methods is necessary to confirm their applicability across centres.

Keywords

Vascular parkinsonism Parkinson’s disease [123I]FP-CIT SPECT Statistical parametric mapping Predictive models 

References

  1. 1.
    Rektor I, Rektorova I, Kubova D. Vascular parkinsonism - an update. J Neurol Sci. 2006;248:185–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Fitzgerald PM, Jankovic J. Lower body parkinsonism: evidence for vascular etiology. Mov Disord. 1989;4:249–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Winikates J, Jankovic J. Clinical correlates of vascular parkinsonism. Arch Neurol. 1999;56:98–102.PubMedCrossRefGoogle Scholar
  4. 4.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. The accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinicopathologic study. J Neurol Neurosurg Psychiatry. 1992;55:181–4.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zijlmans JC, Daniel SE, Hughes AJ, Revesz T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord. 2004;19:630–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Kalra S, Grosset DG, Benamer HT. Differentiating vascular parkinsonism from idiopathic Parkinson’s disease: a systematic review. Mov Disord. 2010;25:149–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Jellinger KA. Prevalence of cerebrovascular lesions in Parkinson’s disease. A post-mortem study. Acta Neuropathol. 2003;105:415–9.PubMedGoogle Scholar
  8. 8.
    Zijlmans J, Katzenschlager R, Daniel S, Lees A. The L-dopa response in vascular parkinsonism. J Neurol Neurosurg Psychiatry. 2004;75:545–7.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Zijlmans J, Evans A, Fontes F, Katzenschlager R, Gacinovic S, Lees AJ, et al. [123I]FP-CIT SPECT study in vascular parkinsonism and Parkinson’s disease. Mov Disord. 2007;22:1278–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Gerschlager W, Bencsits G, Pirker W, Bloem BR, Asenbaum S, Prayer D, et al. [123I]beta-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s disease. Mov Disord. 2002;17:518–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Lorberboym M, Djaldetti R, Melamed E, Sadeh M, Lampl Y. 123I-FP-CIT SPECT imaging of dopamine transporters in patients with cerebrovascular disease and clinical diagnosis of vascular parkinsonism. J Nucl Med. 2004;45:1688–93.PubMedGoogle Scholar
  12. 12.
    Contrafatto D, Mostile G, Nicoletti A, Dibilio V, Raciti L, Lanzafame S, et al. [123I]FP-CIT-SPECT asymmetry index to differentiate Parkinson’s disease from vascular parkinsonism. Acta Neurol Scand. 2012;126:12–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Navarro-Otano J, Gaig C, Muxi A, Lomeña F, Compta Y, Buongiorno MT, et al. (123)I-MIBG cardiac uptake, smell identification and (123)I-FP-CIT SPECT in the differential diagnosis between vascular parkinsonism and Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:192–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Antonini A, Vitale C, Barone P, Cilia R, Righini A, Bonuccelli U, et al. The relationship between cerebral vascular disease and parkinsonism: the VADO study. Parkinsonism Relat Disord. 2012;18:775–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Benamer TS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15:503–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Colloby SJ, O’Brien JT, Fenwick JD, Firbank MJ, Burn DJ, McKeith IG, et al. The application of statistical parametric mapping to 123-I-FPCIT SPECT in dementia with Lewy bodies, Alzheimer’s disease and Parkinson’s disease. Neuroimage. 2004;23:956–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Scherfler C, Seppi K, Donnemiller E, Goebel G, Brenneis C, Virgolini I, et al. Voxel-wise analysis of [123I]β-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain. 2005;128:1605–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Goebel G, Seppi K, Donnemiller E, Warwitz B, Wenning GK, Virgolini I, et al. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders. Eur J Nucl Med Mol Imaging. 2011;38(4):702–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Nocker M, Seppi K, Donnemiller E, Virgolini I, Wenning GK, Poewe W, et al. Progression of dopamine transporter decline in patients with the Parkinson variant of multiple system atrophy: a voxel-based analysis of [123I]β-CIT SPECT. Eur J Nucl Med Mol Imaging. 2012;39:1012–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Benitez-Rivero S, Marin-Oyaga VA, Garcia-Solis D, Huertas-Fernández I, García-Gómez FJ, Jesús S, et al. Clinical features and 123I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013;84:122–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Koch W, Radau P, Hamann C, Tatsch K. Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies. J Nucl Med. 2005;46:1109–18.PubMedGoogle Scholar
  22. 22.
    García-Gómez FJ, García-Solís D, Luis-Simón FJ, Marín-Oyaga VA, Carrillo F, Mir P, et al. Elaboration of the SPM template for the standardization of SPECT images with 123I-Ioflupane. Rev Esp Med Nucl Imagen Mol. 2013;32:350–6.PubMedGoogle Scholar
  23. 23.
    Varrone A, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Booij J, et al. European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis. Eur J Nucl Med Mol Imaging. 2013;40:213–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Erro R, Pappatà S, Amboni M, Vicidomini C, Longo K, Santangelo G, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18:1034–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning - Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics. Berlin: Springer; 2009. p. 1–745.Google Scholar
  26. 26.
    Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J Nucl Med. 2013;54:1331–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • I. Huertas-Fernández
    • 1
  • F. J. García-Gómez
    • 2
  • D. García-Solís
    • 2
    • 3
  • S. Benítez-Rivero
    • 1
  • V. A. Marín-Oyaga
    • 2
  • S. Jesús
    • 1
  • M. T. Cáceres-Redondo
    • 1
  • J. A. Lojo
    • 2
  • J. F. Martín-Rodríguez
    • 1
  • F. Carrillo
    • 1
  • P. Mir
    • 1
    • 3
  1. 1.Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología ClínicaInstituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
  2. 2.Servicio de Medicina Nuclear, UDIMHospital Universitario Virgen del RocíoSevilleSpain
  3. 3.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)SevilleSpain

Personalised recommendations