Advertisement

Metabolic tumour volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients

  • Michel Meignan
  • Myriam Sasanelli
  • René Olivier Casasnovas
  • Stefano Luminari
  • Federica Fioroni
  • Chiara Coriani
  • Helene Masset
  • Emmanuel Itti
  • Paolo G. Gobbi
  • Francesco Merli
  • Annibale Versari
Original Article

Abstract

Purpose

The presence of a bulky tumour at staging on CT is an independent prognostic factor in malignant lymphomas. However, its prognostic value is limited in diffuse disease. Total metabolic tumour volume (TMTV) determined on 18F-FDG PET/CT could give a better evaluation of the total tumour burden and may help patient stratification. Different methods of TMTV measurement established in phantoms simulating lymphoma tumours were investigated and validated in 40 patients with Hodgkin lymphoma and diffuse large B-cell lymphoma.

Methods

Data were processed by two nuclear medicine physicians in Reggio Emilia and Créteil. Nineteen phantoms filled with 18F-saline were scanned; these comprised spherical or irregular volumes from 0.5 to 650 cm3 with tumour-to-background ratios from 1.65 to 40. Volumes were measured with different SUVmax thresholds. In patients, TMTV was measured on PET at staging by two methods: volumes of individual lesions were measured using a fixed 41 % SUVmax threshold (TMTV41) and a variable visually adjusted SUVmax threshold (TMTVvar).

Results

In phantoms, the 41 % threshold gave the best concordance between measured and actual volumes. Interobserver agreement was almost perfect. In patients, the agreement between the reviewers for TMTV41 measurement was substantial (ρ c = 0.986, CI 0.97 – 0.99) and the difference between the means was not significant (212 ± 218 cm3 for Créteil vs. 206 ± 219 cm3 for Reggio Emilia, P = 0.65). By contrast the agreement was poor for TMTVvar. There was a significant direct correlation between TMTV41 and normalized LDH (r = 0.652, CI 0.42 – 0.8, P <0.001). Higher disease stages and bulky tumour were associated with higher TMTV41, but high TMTV41 could be found in patients with stage 1/2 or nonbulky tumour.

Conclusion

Measurement of baseline TMTV in lymphoma using a fixed 41% SUVmax threshold is reproducible and correlates with the other parameters for tumour mass evaluation. It should be evaluated in prospective studies.

Keywords

Metabolic volume Lymphoma Prognosis PET/CT 

Notes

Author contributions

Conception and design

Michel Meignan, Annibale Versari, Stefano Luminari, Francesco Merli, Paolo G. Gobbi, Olivier Casasnovas.

Collection and assembly of data

All authors.

Data analysis and interpretation

Myriam Sasanelli, Annibale Versari, Michel Meignan, Federica Fioroni, Chiara Coriani, Olivier Casasnovas, Emmanuel Itti.

Manuscript writing

Michel Meignan, Annibale Versari, Olivier Casasnovas.

Final approval of manuscript

All authors.

Conflicts of interest

None.

References

  1. 1.
    Eichenauer DA, Engert A, Dreyling M. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2011;22 Suppl 6:vi55–8.PubMedGoogle Scholar
  2. 2.
    Pfreundschuh M, Ho AD, Cavallin-Stahl E, Wolf M, Pettengell R, Vasova I, et al. Prognostic significance of maximum tumour (bulk) diameter in young patients with good-prognosis diffuse large-B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: an exploratory analysis of the MabThera International Trial Group (MInT) study. Lancet Oncol. 2008;9:435–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Pfreundschuh M, Kuhnt E, Trümper L, Osterborg A, Trneny M, Shepherd L, et al. CHOP-like chemotherapy with or without rituximab in young patients with good-prognosis diffuse large-B-cell lymphoma: 6-year results of an open-label randomised study of the MabThera International Trial (MInT) Group. Lancet Oncol. 2011;12:1013–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339:1506–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Gobbi PG, Bassi E, Bergonzi M, Merli F, Coriani C, Iannitto E, et al. Tumour burden predicts treatment resistance in patients with early unfavourable or advanced stage Hodgkin lymphoma treated with ABVD and radiotherapy. Hematol Oncol. 2012;30:194–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Van de Wiele C, Kruse V, Smeets P, Sathekge M, Maes A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur J Nucl Med Mol Imaging. 2012;40:290–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Berkowitz A, Basu S, Srinivas S, Sankaran S, Schuster S, Alavi A. Determination of whole-body metabolic burden as a quantitative measure of disease activity in lymphoma: a novel approach with fluorodeoxyglucose-PET. Nucl Med Commun. 2008;29:521–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Song MK, Chung JS, Shin HJ, Moon JH, Lee JO, Lee HS, et al. Prognostic value of metabolic tumor volume on PET/CT in primary gastrointestinal diffuse large B cell lymphoma. Cancer Sci. 2012;103:477–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Song MK, Chung JS, Shin HJ, Lee SM, Lee SE, Lee HS, et al. Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement. Ann Hematol. 2012;91:697–703.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mikhaeel NG, Smith D, Philips MM, Dunn JT, Fields PA, Moller H, et al. Does quantitative PET-CT predict prognosis in diffuse large B cell lymphoma. Hematol Oncol. 2013;31 Suppl 1:96–150.Google Scholar
  12. 12.
    Song MK, Chung JS, Lee JJ, Jeong SY, Lee SM, Hong JS, et al. Metabolic tumor volume by positron emission tomography/computed tomography as a clinical parameter to determine therapeutic modality for early stage Hodgkin's lymphoma. Cancer Sci. 2013;104:1656–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Luminari S, Cesaretti M, Tomasello C, Guida A, Bagni B, Merli F, et al. Use of 2-[18 F]fluoro-2-deoxy-D-glucose positron emission tomography in patients with Hodgkin lymphoma in daily practice: a population-based study from Northern Italy. Leuk Lymphoma. 2011;52:1689–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Casasnovas RO, Meignan M, Berriolo-Riedinger A, Bardet S, Julian A, Thieblemont C, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood. 2011;118:37–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45:255–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Barnhart HX, Haber MJ, Lin LI. An overview on assessing agreement with continuous measurements. J Biopharm Stat. 2007;17:529–69.PubMedCrossRefGoogle Scholar
  19. 19.
    McBride GB. A proposal for strength of agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Report HAM2005-062. Hamilton, New Zealand: National Institute of Water & Atmospheric Research Ltd; 2005.Google Scholar
  20. 20.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Ford EC, Kinahan PE, Hanlon L, Alessio A, Rajendran J, Schwartz DL, et al. Tumor delineation using PET in head and neck cancers: threshold contouring and lesion volumes. Med Phys. 2006;33:4280–8.PubMedCrossRefGoogle Scholar
  22. 22.
    van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun. 2007;28:485–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Frings V, de Langen AJ, Smit EF, van Velden FH, Hoekstra OS, van Tinteren H, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Sasanelli M, Itti E, Biggi A, Berriolo-Riedinger A, Cashen A, Tilly H, et al. Prognostic value of pretherapy metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in patients with diffuse large B-cell lymphoma (DLBCL). J Nucl Med. 2012;53:170P.Google Scholar
  26. 26.
    Casasnovas RO, Sasanelli M, Berriolo-Riedinger A, Morschhauser F, Itti E, Huglo D, et al. Baseline metabolic tumor volume is predictive of patient outcome in diffuse large B cell lymphoma. Blood. 2012;120:1598.Google Scholar
  27. 27.
    Bodet-Milin C, Kraeber-Bodere F, Moreau P, Campion L, Dupas B, Le Gouill S. Investigation of FDG-PET/CT imaging to guide biopsies in the detection of histological transformation of indolent lymphoma. Haematologica. 2008;93:471–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Schöder H, Noy A, Gönen M, Weng L, Green D, Erdi YE, et al. Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:4643–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kanoun SRC, Berriolo-Riedinger A, Humbert O, Dygay-Cochet I, Chretien ML, Legouge C, et al. Metabolic tumor volume is an independent prognosis factor predicting patient’s outcome in Hodgkin lymphoma. Blood. 2012;120:3631.Google Scholar
  31. 31.
    Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMedGoogle Scholar
  32. 32.
    Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med. 2007;48:108–14.PubMedGoogle Scholar
  33. 33.
    Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, et al. Comparative assessment of methods for estimating tumor volume and standardized uptake value in (18)F-FDG PET. J Nucl Med. 2010;51:268–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michel Meignan
    • 1
    • 10
  • Myriam Sasanelli
    • 1
  • René Olivier Casasnovas
    • 2
  • Stefano Luminari
    • 3
  • Federica Fioroni
    • 4
  • Chiara Coriani
    • 5
  • Helene Masset
    • 6
  • Emmanuel Itti
    • 1
  • Paolo G. Gobbi
    • 7
  • Francesco Merli
    • 8
  • Annibale Versari
    • 9
  1. 1.Department of Nuclear MedicineHôpital Henri Mondor and Paris-Est UniversityCréteilFrance
  2. 2.Department of HematologyCHU Le BocageDijonFrance
  3. 3.Department of Diagnostic, Clinic and Public Health MedicineUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.Department of Medical PhysicsSanta Maria Nuova Hospital-IRCCSReggio EmiliaItaly
  5. 5.Department of RadiologySanta Maria Nuova Hospital-IRCCSReggio EmiliaItaly
  6. 6.Department of RadiophysicsHenri Mondor HospitalCréteilFrance
  7. 7.Department of Internal Medicine and Gastroenterology, Fondazione IRCCS Policlinico San MatteoUniversity of PaviaPaviaItaly
  8. 8.Department of HematologySanta Maria Nuova Hospital-IRCCSReggio EmiliaItaly
  9. 9.Department of Nuclear MedicineSanta Maria Nuova Hospital-IRCCSReggio EmiliaItaly
  10. 10.Service de Médecine Nucléaire, EAC CNRS 7054, Hôpital Henri Mondor AP-HPParis-Est UniversityCréteilFrance

Personalised recommendations