Advertisement

FDG PET during radiochemotherapy is predictive of outcome at 1 year in non-small-cell lung cancer patients: a prospective multicentre study (RTEP2)

  • Pierre VeraEmail author
  • Sandrine Mezzani-Saillard
  • Agathe Edet-Sanson
  • Jean-François Ménard
  • Romain Modzelewski
  • Sebastien Thureau
  • Marc-Etienne Meyer
  • Khadija Jalali
  • Stéphane Bardet
  • Delphine Lerouge
  • Claire Houzard
  • Françoise Mornex
  • Pierre Olivier
  • Guillaume Faure
  • Caroline Rousseau
  • Marc-André Mahé
  • Philippe Gomez
  • Isabelle Brenot-Rossi
  • Naji Salem
  • Bernard Dubray
Original Article

Abstract

Purpose

To assess prospectively the prognostic value of FDG PET/CT during curative-intent radiotherapy (RT) with or without concomitant chemotherapy in patients with non-small-cell lung cancer (NSCLC).

Methods

Patients with histological proof of invasive localized NSCLC and evaluable tumour, and who were candidates for curative-intent radiochemotherapy (RCT) or RT were preincluded after providing written informed consent. Definitive inclusion was conditional upon significant FDG uptake before RT (PET1). All included patients had a FDG PET/CT scan during RT (PET2, mean dose 43 Gy) and were evaluated by FDG PET/CT at 3 months and 1 year after RT. The main endpoint was death (from whatever cause) or tumour progression at 1 year.

Results

Of 77 patients preincluded, 52 were evaluable. Among the evaluable patients, 77 % received RT with induction chemotherapy and 73 % RT with concomitant chemotherapy. At 1 year, 40 patients (77 %) had died or had tumour progression. No statistically significant association was found between stage (IIIB vs. other), histology (squamous cell carcinoma vs. other), induction or concomitant chemotherapy, and death/tumour progression at 1 year. The SUVmax in the PET2 scan was the single variable predictive of death or tumour progression at 1 year (odds ratio 1.97, 95 % CI 1.25 – 3.09, p = 0.003) in multivariate analysis. The area under the receiver operating characteristic curve was 0.85 (95 % CI 0.73 – 0.94, p < 10−4). A SUVmax value of 5.3 in the PET2 scan yielded a sensitivity of 70 % and a specificity of 92 % for predicting tumour progression or death at 1 year.

Conclusion

This prospective multicentre study demonstrated the prognostic value in terms of disease-free survival of SUVmax assessed during the 5th week of curative-intent RT or RCT in NSCLC patients (NCT01261598; RTEP2 study).

Keywords

Positron emission tomography Fluoro-deoxy-d-glucose Lung cancer Radiochemotherapy Predictive value 

Notes

Acknowledgement

We thank the patients who agreed to participate in the present study and their respective referring pneumonologists, nuclear medicine physicians and radiation oncologists from the participating centres (Nantes, Rouen, Amiens, Caen, Nancy, Creteil and Lyon). The authors thank the technologist and assistants of the Department of Nuclear Medicine (Centre Henri Becquerel) for their help in managing the patients. We are particularly grateful to Drs. L.P. Pepin and P. Gouel and Mr. A. Dumouchel from the clinical research unit for their excellent collaboration.

Research support

This study was supported by a grant from the Ligue Contre le Cancer de Haute Normandie and the North Ouest Canceropole (Institut National du Cancer; INCa).

Conflicts of interest

None.

Presentation elsewhere

None.

References

  1. 1.
    Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, et al. Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol. 2010;5(5):612–9.PubMedGoogle Scholar
  2. 2.
    Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38(9):1628–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Kong FM, Frey KA, Quint LE, Ten Haken RK, Hayman JA, Kessler M, et al. A pilot study of [18F]fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol. 2007;25(21):3116–23.PubMedCrossRefGoogle Scholar
  4. 4.
    van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys. 2007;68(3):771–8.PubMedCrossRefGoogle Scholar
  5. 5.
    van Elmpt W, Ollers M, Dingemans AM, Lambin P, De Ruysscher D. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med. 2012;53(10):1514–20.PubMedCrossRefGoogle Scholar
  6. 6.
    van Loon J, Offermann C, Ollers M, van Elmpt W, Vegt E, Rahmy A, et al. Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I-III small cell lung cancer: a hypothesis generating study. Radiother Oncol. 2011;99(2):172–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang HQ, Yu JM, Meng X, Yue JB, Feng R, Ma L. Prognostic value of serial [18F]fluorodeoxyglucose PET-CT uptake in stage III patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Eur J Radiol. 2011;77(1):92–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol. 2012;102(2):251–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Vermandel M, Fin L, Hapdey S, Bol A, Betrouni N, Daouk J, et al. An easy-to-use phantom and protocol for weekly PET quality assessment: a multicenter study. Med Phys. 2008;35(9):3922–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53(1):4–11.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    van Baardwijk A, Bosmans G, Dekker A, van Kroonenburgh M, Boersma L, Wanders S, et al. Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother Oncol. 2007;82(2):145–52.PubMedCrossRefGoogle Scholar
  13. 13.
    van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans AM, et al. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol. 2010;28(8):1380–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35(12):2320–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52 Suppl 2:93S–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Safar V, Dupuis J, Itti E, Jardin F, Fruchart C, Bardet S, et al. Interim [18F]fluorodeoxyglucose positron emission tomography scan in diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy plus rituximab. J Clin Oncol. 2012;30(2):184–90.PubMedCrossRefGoogle Scholar
  17. 17.
    De Ruysscher D, Kirsch CM. PET scans in radiotherapy planning of lung cancer. Radiother Oncol. 2010;96(3):335–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Machtay M, Duan F, Siegel BA, Snyder BS, Gorelick JJ, Reddin JS, et al. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol. 2013;31(30):3823–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics. 2005;25(1):191–207.PubMedCrossRefGoogle Scholar
  21. 21.
    Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122(3):1037–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Sculier JP, Chansky K, Crowley JJ, Van Meerbeeck J, Goldstraw P. The impact of additional prognostic factors on survival and their relationship with the anatomical extent of disease expressed by the 6th Edition of the TNM Classification of Malignant Tumors and the proposals for the 7th Edition. J Thorac Oncol. 2008;3(5):457–66.PubMedCrossRefGoogle Scholar
  23. 23.
    van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J, Emans D, et al. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol. 2012;104(1):67–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA. Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys. 1992;22(2):241–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pierre Vera
    • 1
    Email author
  • Sandrine Mezzani-Saillard
    • 2
  • Agathe Edet-Sanson
    • 1
  • Jean-François Ménard
    • 3
  • Romain Modzelewski
    • 1
  • Sebastien Thureau
    • 2
  • Marc-Etienne Meyer
    • 4
  • Khadija Jalali
    • 5
  • Stéphane Bardet
    • 6
  • Delphine Lerouge
    • 7
  • Claire Houzard
    • 8
  • Françoise Mornex
    • 9
  • Pierre Olivier
    • 10
  • Guillaume Faure
    • 11
  • Caroline Rousseau
    • 12
  • Marc-André Mahé
    • 13
  • Philippe Gomez
    • 14
    • 15
  • Isabelle Brenot-Rossi
    • 16
  • Naji Salem
    • 17
  • Bernard Dubray
    • 2
  1. 1.Department of Nuclear Medicine, Henri Becquerel Cancer CenterHenri Becquerel Center & QuantIF - Litis [EA (Equipe d’Accueil) 4108] & Rouen University HospitalRouenFrance
  2. 2.Department of Radiation Oncology and Medical Physics, Henri Becquerel Cancer CenterHenri Becquerel Center & QuantIF - Litis [EA (Equipe d’Accueil) 4108] & Rouen University HospitalRouenFrance
  3. 3.Department of BiostatisticsRouen University Hospital and University of RouenRouenFrance
  4. 4.Department of Nuclear MedicineAmiens University HospitalAmiensFrance
  5. 5.Department of Radiation OncologyAmiens University HospitalAmiensFrance
  6. 6.Department of Nuclear MedicineFrançois Baclesse Cancer CenterCaenFrance
  7. 7.Department of Radiation OncologyFrançois Baclesse Cancer CenterCaenFrance
  8. 8.Department of Nuclear MedicineHospices Civils de LyonLyonFrance
  9. 9.Department of Radiation OncologyHospices Civils de LyonLyonFrance
  10. 10.Department of Nuclear MedicineBrabois University HospitalNancyFrance
  11. 11.Department of Radiation OncologyCentre privé de Radiothérapie de MetzMetzFrance
  12. 12.Department of Nuclear MedicineRenée Gauducheau Cancer CenterNantesFrance
  13. 13.Department of Radiation OncologyInstitut de cancérologie-René GauducheauNantesFrance
  14. 14.Radiation OncologyCentre Frédéric JoliotRouenFrance
  15. 15.Clinique Saint-HilaireRouenFrance
  16. 16.Department of Nuclear MedicineInstitut Paoli CalmetteMarseilleFrance
  17. 17.Department of Radiation OncologyInstitut Paoli CalmetteMarseilleFrance

Personalised recommendations