Arterial and fat tissue inflammation are highly correlated : a prospective 18F-FDG PET/CT study

  • Jan Bucerius
  • Venkatesh Mani
  • Stephanie Wong
  • Colin Moncrieff
  • David Izquierdo-Garcia
  • Josef Machac
  • Valentin Fuster
  • Michael E. Farkouh
  • James H. F. Rudd
  • Zahi A. Fayad
Original Article



There is evidence that the link between obesity and cardiovascular disease might relate to inflammation in both fat tissue and the arterial wall. 18F-FDG uptake on PET is a surrogate marker of vessel wall inflammation. The aim of the study was to measure FDG uptake in both regions using PET and identify links between adipose and arterial inflammation.


Included in the study were 173 cardiovascular patients who were prospectively imaged with FDG PET/CT. Arterial FDG uptake was measured in the carotid arteries and ascending aorta. The same was done in fat tissue in the neck, the presternal region (both subcutaneous) and the pericardium. FDG uptake was quantified as average maximal target-to-background ratio (meanTBRmax). Multivariate regression analyses were performed to identify significant associations between arterial and adipose tissue FDG uptake and clinical variables as given by the standardized correlation coefficient (β).


FDG uptake values in all fat tissue regions were highly predictive of vascular FDG uptake in both the carotids (β 0.262, p < 0.0001, in the neck subcutaneous region) and aorta (β 0.22, p = 0.008, in the chest pericardial region; β 0.193, p = 0.019, in the chest subcutaneous region). Obesity was significantly associated with elevated FDG uptake in adipose tissue (β 0.470, p < 0.0001, in the neck subcutaneous region; β 0.619, p = 0.028, in the chest subcutaneous region; β 0.978, p = 0.035, in the chest pericardial region).


FDG uptake in diverse fat tissue regions was significantly associated with arterial FDG uptake, a reasonable surrogate of inflammation. Increasing body weight significantly predicted the level of fatty inflammation. FDG PET therefore provides imaging evidence of an inflammatory link between fat tissue and the vasculature in patients with cardiovascular disease.


FDG PET Inflammation Atherosclerosis Fat tissue Carotid arteries Aorta 



The authors wish to thank Ash Rafique, RT, BS, CNMT, for his assistance with image acquisition. Work on this study was partly supported by the NIHR Cambridge Biomedical Research Centre (J.H.F.R.). Partial support was provided by: NIH/NHLBI R01 HL071021 (Z.A.F.), NIH/NHLBI R01 HL078667 (Z.A.F. and M.E.F.), and NIH/NCATS CTSA UL1TR000067 (Imaging Core) (Z.A.F.).

Conflicts of interest



  1. 1.
    Calabró P, Golia E, Maddaloni V, Malvezzi M, Casillo B, Marotta C, et al. Adipose tissue-mediated inflammation: the missing link between obesity and cardiovascular disease? Intern Emerg Med. 2009;4:25–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Grundy SM. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Sowers JR. Obesity as a cardiovascular risk factor. Am J Med. 2003;115 Suppl 8A:37S–41S.PubMedCrossRefGoogle Scholar
  4. 4.
    Bucerius J, Duivenvoorden R, Mani V, Moncrieff C, Rudd JH, Calcagno C, et al. Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients: FDG-PET and CT imaging study. JACC Cardiovasc Imaging. 2011;4:1195–205.PubMedCrossRefGoogle Scholar
  5. 5.
    Farb MG, Bigornia S, Mott M, Tanriverdi K, Morin KM, Freedman JE, et al. Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. J Am Coll Cardiol. 2011;58:232–7.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol. 2008;28:1654–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152:346–57.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bucci M, Joutsiniemi E, Saraste A, Kajander S, Ukkonen H, Saraste M, et al. Intrapericardial, but not extrapericardial, fat is an independent predictor of impaired hyperemic coronary perfusion in coronary artery disease. Arterioscler Thromb Vasc Biol. 2011;31:211–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation. 2008;117:605–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102:767–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF, et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol. 2008;102:380–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, et al. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:781–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Pedersen SF, Graebe M, Fisker Hag AM, Højgaard L, Sillesen H, Kjaer A. Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun. 2010;31:423–9.PubMedGoogle Scholar
  17. 17.
    Christen T, Sheikine Y, Rocha VZ, Hurwitz S, Goldfine AB, Di Carli M, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging. 2010;3:843–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87:3902–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007;49:1533–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Bucerius J, Mani V, Moncrieff C, Rudd JHF, Machac J, Fuster V, et al. Impact of non-insulin dependent type-2 diabetes on carotid wall 18F-FDG-PET uptake. J Am Coll Cardiol. 2012;59:2080–8.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12:294–301.PubMedCrossRefGoogle Scholar
  23. 23.
    Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang Y, Moss J, Thisted R. Predictors of body surface area. J Clin Anesth. 1992;4:4–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, et al. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging. 2009;2:107–15.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet. 2006;368:666–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Brunken R, Freire M, Neumann D. Visceral fat volume is unrelated to adipose tissue inflammation. J Nucl Cardiol 2008;15:S7 (Abstract).Google Scholar
  28. 28.
    Hajer GR, van Haeften TW, Visseren FLJ. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008;29:2959–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Gabrielsson BG, Johansson JM, Lönn M, Jernås M, Olbers T, Peltonen M, et al. High expression of complement components in omental adipose tissue in obese men. Obes Res. 2003;11:699–708.PubMedCrossRefGoogle Scholar
  30. 30.
    Dusserre E, Moulin P, Vidal H. Differences in mRNA expression of the proteins secreted by the adipocytes in human subcutaneous and visceral adipose tissues. Biochim Biophys Acta. 2000;1500:88–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Virtanen KA, Iozzo P, Hällsten K, Huupponen R, Parkkola R, Janatuinen T, et al. Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes: a positron-emitting tomography study. Diabetes. 2005;54:2720–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Elkhawad M, Rudd JHF, Sarov-Blat L, Cai G, Wells R, Davies LC, et al. Effects of p38 mitogen-activated protein kinase inhibition on vascular and systemic inflammation in patients with atherosclerosis: results from a randomized controlled study. JACC Cardiovasc Imaging. 2012;5:911–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson PW, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Kotsis VT, Stabouli SV, Papamichael CM, Zakopoulos NA. Impact of obesity in intima media thickness of carotid arteries. Obesity. 2006;14:1708–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Getz GS. Thematic review series: the immune system and atherogenesis. Immune function in atherogenesis. J Lipid Res. 2005;46:1–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest. 2007;117:185–94.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007;117:195–205.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Schlitt A, Heine GH, Blankenberg S, Espinola-Klein C, Dopheide JF, Bickel C, et al. CD14+ CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels. Thromb Haemost. 2004;92:419–24.PubMedGoogle Scholar
  40. 40.
    Rogacev KS, Ulrich C, Blömer L, Hornof F, Oster K, Ziegelin M, et al. Monocyte heterogeneity in obesity and subclinical atherosclerosis. Eur Heart J. 2010;31:369–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Cottam DR, Schaefer PA, Shaftan GW, Velcu L, Angus LD. Effect of surgically-induced weight loss on leukocyte indicators of chronic inflammation in morbid obesity. Obes Surg. 2002;12:335–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu H, Perrard XD, Wang Q, Perrard JL, Polsani VR, Jones PH, et al. CD11c expression in adipose tissue and blood and its role in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2010;30:186–92.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119:2708–17.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Zhao L, Moos MP, Gräbner R, Pédrono F, Fan J, Kaiser B, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med. 2004;10:966–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Silvera SS, Aidi HE, Rudd JH, Mani V, Yang L, Farkouh M, et al. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis. 2009;207:139–43.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jan Bucerius
    • 1
    • 2
    • 3
    • 4
    • 5
  • Venkatesh Mani
    • 1
    • 2
    • 6
  • Stephanie Wong
    • 1
    • 2
  • Colin Moncrieff
    • 1
    • 2
  • David Izquierdo-Garcia
    • 1
    • 2
  • Josef Machac
    • 7
  • Valentin Fuster
    • 6
    • 8
  • Michael E. Farkouh
    • 6
    • 9
  • James H. F. Rudd
    • 10
  • Zahi A. Fayad
    • 1
    • 2
    • 6
  1. 1.Translational and Molecular Imaging InstituteMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of RadiologyMount Sinai School of MedicineNew YorkUSA
  3. 3.Department of Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
  4. 4.Cardiovascular Research Institute Maastricht (CARIM)Maastricht University Medical CenterMaastrichtThe Netherlands
  5. 5.Department of Nuclear MedicineUniversity Hospital RWTH AachenAachenGermany
  6. 6.Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josée and Henry R. Kravis Cardiovascular Health CenterMount Sinai School of MedicineNew YorkUSA
  7. 7.Division of Nuclear Medicine, Department of RadiologyMount Sinai School of MedicineNew YorkUSA
  8. 8.The Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
  9. 9.Cardiovascular Imaging Clinical Trials UnitMount Sinai School of MedicineNew YorkUSA
  10. 10.Division of Cardiovascular MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations