FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: systematic review and meta-analysis

  • Hugo J. A. Adams
  • Thomas C. Kwee
  • Bart de Keizer
  • Rob Fijnheer
  • John M. H. de Klerk
  • Rutger A. J. Nievelstein
Review Article



To systematically review and meta-analyse published data on the diagnostic performance of 18F-FDG PET/CT in detecting bone marrow involvement in patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL).


PubMed/MEDLINE and Embase were systematically searched for relevant studies. The methodological quality of each study was assessed. Sensitivities and specificities of FDG PET/CT in individual studies were calculated and meta-analysed with a random effects model. A summary receiver operating characteristic curve (sROC) was constructed with the Moses-Shapiro-Littenberg method. Weighted summary proportions of discrepancies between the FDG PET/CT and (blind) bone marrow biopsy (BMB) results among all patients were calculated.


Seven studies, with a total of 654 patients with newly diagnosed DLBCL, were included. Overall, the quality of the included studies was moderate. The sensitivity and specificity of FDG PET/CT for detecting bone marrow involvement ranged from 70.8 % to 95.8 % and from 99.0 % to 100 %, with pooled estimates of 88.7 % (95 % confidence interval, CI, 82.5 – 93.3 %) and 99.8 % (95 % CI 98.8 – 100 %), respectively. The area under the sROC curve was 0.9983. The weighted summary proportion of FDG PET/CT-negative patients with positive BMB findings among all patients was 3.1 % (95 % CI 1.8 – 5.0 %) and the weighted summary proportion of FDG PET/CT-positive patients with negative BMB findings among all patients was 12.5 % (95 % CI 8.4 – 17.3 %).


FDG PET/CT is accurate and complementary to BMB for detecting bone marrow involvement in patients with newly diagnosed DLBCL. A negative FDG PET/CT scan cannot rule out the presence of bone marrow involvement, but positive FDG PET/CT findings obviate the need for BMB for the detection of bone marrow involvement in these patients.


Biopsy Bone marrow Diffuse large B-cell lymphoma FDG PET/CT Systematic review Meta-analysis 



This project was financially supported by an Alpe d’HuZes/Dutch Cancer Society Bas Mulder Award to T.C.K. (grant no. 5409) and the grant of a ZonMW AGIKO stipend to T.C.K. (grant no. 92003497). Data collection, analysis and interpretation, the writing of the paper, and the decision to submit were left to the authors’ discretion and were not influenced by Alpe d’HuZes/Dutch Cancer Society or ZonMW.

Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30. doi: 10.3322/caac.21166.PubMedCrossRefGoogle Scholar
  2. 2.
    Flowers CR, Sinha R, Vose JM. Improving outcomes for patients with diffuse large B-cell lymphoma. CA Cancer J Clin. 2010;60:393–408. doi: 10.3322/caac.20087.PubMedGoogle Scholar
  3. 3.
    Tilly H, Vitolo U, Walewski J, da Silva MG, Shpilberg O, Andre M, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii78–82. doi: 10.1093/annonc/mds273.PubMedCrossRefGoogle Scholar
  4. 4.
    Vanhelleputte P, Nijs K, Delforge M, Evers G, Vanderschueren S. Pain during bone marrow aspiration: prevalence and prevention. J Pain Symptom Manage. 2003;26:860–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bain BJ. Morbidity associated with bone marrow aspiration and trephine biopsy – a review of UK data for 2004. Haematologica. 2006;91:1293–4.PubMedGoogle Scholar
  6. 6.
    Torlakovic EE, Naresh K, Kremer M, van der Walt J, Hyjek E, Porwit A. Call for a European programme in external quality assurance for bone marrow immunohistochemistry; report of a European Bone Marrow Working Group pilot study. J Clin Pathol. 2009;62:547–51. doi: 10.1136/jcp.2008.063446.PubMedCrossRefGoogle Scholar
  7. 7.
    Brunning RD, Bloomfield CD, McKenna RW, Peterson LA. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med. 1975;82:365–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Coller BS, Chabner BA, Gralnick HR. Frequencies and patterns of bone marrow involvement in non-Hodgkin lymphomas: observations on the value of bilateral biopsies. Am J Hematol. 1977;3:105–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Haddy TB, Parker RI, Magrath IT. Bone marrow involvement in young patients with non-Hodgkin’s lymphoma: the importance of multiple bone marrow samples for accurate staging. Med Pediatr Oncol. 1989;17:418–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang J, Weiss LM, Chang KL, Slovak ML, Gaal K, Forman SJ, et al. Diagnostic utility of bilateral bone marrow examination: significance of morphologic and ancillary technique study in malignancy. Cancer. 2002;94:1522–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30. doi: 10.2967/jnumed.109.067892.PubMedCrossRefGoogle Scholar
  12. 12.
    Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25:571–8. doi: 10.1200/JCO.2006.08.2305.PubMedCrossRefGoogle Scholar
  13. 13.
    Pakos EE, Fotopoulos AD, Ioannidis JP. 18F-FDG PET for evaluation of bone marrow infiltration in staging of lymphoma: a meta-analysis. J Nucl Med. 2005;46:958–63.PubMedGoogle Scholar
  14. 14.
    A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–18.Google Scholar
  15. 15.
    Lim ST, Tao M, Cheung YB, Rajan S, Mann B. Can patients with early-stage diffuse large B-cell lymphoma be treated without bone marrow biopsy? Ann Oncol. 2005;16:215–8. doi: 10.1093/annonc/mdi050.PubMedCrossRefGoogle Scholar
  16. 16.
    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. doi: 10.1059/0003-4819-155-8-201110180-00009.PubMedCrossRefGoogle Scholar
  17. 17.
    Deville WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, et al. Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol. 2002;2:9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993;12:1293–316.PubMedCrossRefGoogle Scholar
  19. 19.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. doi: 10.1136/bmj.327.7414.557.PubMedCrossRefGoogle Scholar
  20. 20.
    Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Salaun PY, Gastinne T, Bodet-Milin C, Campion L, Cambefort P, Moreau A, et al. Analysis of 18F-FDG PET diffuse bone marrow uptake and splenic uptake in staging of Hodgkin’s lymphoma: a reflection of disease infiltration or just inflammation? Eur J Nucl Med Mol Imaging. 2009;36:1813–21. doi: 10.1007/s00259-009-1183-0.PubMedCrossRefGoogle Scholar
  22. 22.
    Elstrom RL, Tsai DE, Vergilio JA, Downs LH, Alavi A, Schuster SJ. Enhanced marrow [18F]fluorodeoxyglucose uptake related to myeloid hyperplasia in Hodgkin’s lymphoma can simulate lymphoma involvement in marrow. Clin Lymphoma. 2004;5:62–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Khan AB, Barrington SF, Mikhaeel NG, Hunt AA, Cameron L, Morris T, et al. PET-CT staging of DLBCL accurately identifies and provides new insight into the clinical significance of bone marrow involvement. Blood. 2013;122:61–7. doi: 10.1182/blood-2012-12-473389.PubMedCrossRefGoogle Scholar
  24. 24.
    Cortes-Romera M, Sabate-Llobera A, Vilchez SM, Climent Esteller F, Maestro AS, Cenzano CG, et al. Bone marrow evaluation in initial staging of lymphoma: 18F-FDG PET/CT versus bone marrow biopsy. Clin Nucl Med. 2013. doi: 10.1097/RLU.0b013e31828e9504.
  25. 25.
    Berthet L, Cochet A, Kanoun S, Berriolo-Riedinger A, Humbert O, Toubeau M, et al. In newly diagnosed diffuse large B-cell lymphoma, determination of bone marrow involvement with 18F-FDG PET/CT provides better diagnostic performance and prognostic stratification than does biopsy. J Nucl Med. 2013;54:1244–50. doi: 10.2967/jnumed.112.114710.PubMedCrossRefGoogle Scholar
  26. 26.
    Hong J, Lee Y, Park Y, Kim SG, Hwang KH, Park SH, et al. Role of FDG-PET/CT in detecting lymphomatous bone marrow involvement in patients with newly diagnosed diffuse large B-cell lymphoma. Ann Hematol. 2012;91:687–95. doi: 10.1007/s00277-011-1353-6.PubMedCrossRefGoogle Scholar
  27. 27.
    Pelosi E, Penna D, Douroukas A, Bello M, Amati A, Arena V, et al. Bone marrow disease detection with FDG-PET/CT and bone marrow biopsy during the staging of malignant lymphoma: results from a large multicentre study. Q J Nucl Med Mol Imaging. 2011;55:469–75.PubMedGoogle Scholar
  28. 28.
    Ngeow JY, Quek RH, Ng DC, Hee SW, Tao M, Lim LC, et al. High SUV uptake on FDG-PET/CT predicts for an aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT staging in lymphoma. Ann Oncol. 2009;20:1543–7. doi: 10.1093/annonc/mdp030.PubMedCrossRefGoogle Scholar
  29. 29.
    Ribrag V, Vanel D, Leboulleux S, Lumbroso J, Couanet D, Bonniaud G, et al. Prospective study of bone marrow infiltration in aggressive lymphoma by three independent methods: whole-body MRI, PET/CT and bone marrow biopsy. Eur J Radiol. 2008;66:325–31. doi: 10.1016/j.ejrad.2007.06.014.PubMedCrossRefGoogle Scholar
  30. 30.
    Sehn LH, Scott DW, Chhanabhai M, Berry B, Ruskova A, Berkahn L, et al. Impact of concordant and discordant bone marrow involvement on outcome in diffuse large B-cell lymphoma treated with R-CHOP. J Clin Oncol. 2011;29:1452–7. doi: 10.1200/JCO.2010.33.3419.PubMedCrossRefGoogle Scholar
  31. 31.
    Chung R, Lai R, Wei P, Lee J, Hanson J, Belch AR, et al. Concordant but not discordant bone marrow involvement in diffuse large B-cell lymphoma predicts a poor clinical outcome independent of the International Prognostic Index. Blood. 2007;110:1278–82. doi: 10.1182/blood-2007-01-070300.PubMedCrossRefGoogle Scholar
  32. 32.
    Paone G, Itti E, Haioun C, Gaulard P, Dupuis J, Lin C, et al. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate. Eur J Nucl Med Mol Imaging. 2009;36:745–50. doi: 10.1007/s00259-008-1021-9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hugo J. A. Adams
    • 1
  • Thomas C. Kwee
    • 1
  • Bart de Keizer
    • 1
  • Rob Fijnheer
    • 2
  • John M. H. de Klerk
    • 3
  • Rutger A. J. Nievelstein
    • 1
  1. 1.Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of HematologyMeander Medical CenterAmersfoortThe Netherlands
  3. 3.Department of Nuclear MedicineMeander Medical CenterAmersfoortThe Netherlands

Personalised recommendations