Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using 18F-FDG PET in luminal HER2-negative breast cancer

  • Olivier HumbertEmail author
  • Alina Berriolo-Riedinger
  • Alexandre Cochet
  • Mélanie Gauthier
  • Céline Charon-Barra
  • Séverine Guiu
  • Isabelle Desmoulins
  • Michel Toubeau
  • Inna Dygai-Cochet
  • Charles Coutant
  • Pierre Fumoleau
  • François Brunotte
Original Article



The objective of this study was to evaluate, in the luminal human epidermal growth factor receptor 2 (HER2)-negative breast cancer subtype, the prognostic value of tumour glucose metabolism at baseline and of its early changes during neoadjuvant chemotherapy (NAC).


This prospective study included 61 women with hormone-sensitive HER2-negative breast cancer treated with NAC. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) was performed at baseline. Hepatic activity was used as a reference to distinguish between low metabolic and hypermetabolic tumours. In hypermetabolic tumours, a PET exam was repeated after the first course of NAC. The relative change in the maximum standardized uptake value of the tumour (∆SUV) was calculated.


Nineteen women had low metabolic luminal breast cancers at baseline, correlated with low proliferation indexes. Forty-two women had hypermetabolic tumours, corresponding to more proliferative breast cancers with higher Ki-67 expression (p = 0.017) and higher grade (p = 0.04). The median follow-up period was 64.2 months (range 11.5–93.2). Thirteen women developed recurrent disease, nine of whom died. Worse overall survival was associated with larger tumour size [>5 cm, hazard ratio (HR) = 6.52, p = 0.009] and with hypermetabolic tumours achieving a low metabolic response after one cycle of NAC (ΔSUV < 16 %, HR = 10.63, p = 0.004). Five-year overall survival in these poor responder patients was 49.2 %. Overall survival in women with low metabolic tumours or hypermetabolic/good response tumours was 100 and 96.15 %, respectively.


In luminal HER2-negative breast tumours, tumour metabolism at baseline and changes after the first course of NAC are early surrogate markers of patients’ survival. A subgroup of women with hypermetabolic/poorly responding tumours, correlated with poor prognosis at 5 years, can be identified early. These results may guide future studies by tailoring the NAC regimen to the metabolic response.


Breast cancer Luminal Neoadjuvant chemotherapy Monitoring 18F-FDG PET 



We are grateful to Mr. Bastable for his writing services. This study is part of the PharmImage® project.

Conflicts of interest



  1. 1.
    Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 2005;97:188–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 1998;16:2672–85.PubMedGoogle Scholar
  3. 3.
    Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 1999;17:460–9.PubMedGoogle Scholar
  4. 4.
    von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796–804.CrossRefGoogle Scholar
  5. 5.
    Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869–74.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418–23.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bhargava R, Striebel J, Beriwal S, Flickinger JC, Onisko A, Ahrendt G, et al. Prevalence, morphologic features and proliferation indices of breast carcinoma molecular classes using immunohistochemical surrogate markers. Int J Clin Exp Pathol 2009;2:444–55.PubMedCentralPubMedGoogle Scholar
  9. 9.
    de Ronde JJ, Hannemann J, Halfwerk H, Mulder L, Straver ME, Vrancken Peeters MJ, et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat 2010;119:119–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, et al. Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 2010;116:1431–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Darb-Esfahani S, Loibl S, Müller BM, Roller M, Denkert C, Komor M, et al. Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res 2009;11:R69.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kim SI, Sohn J, Koo JS, Park SH, Park HS, Park BW. Molecular subtypes and tumor response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. Oncology 2010;79:324–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 2010;28:1684–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 2009;27:1168–76.PubMedCrossRefGoogle Scholar
  15. 15.
    Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 2009;101:736–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Gnant M, Harbeck N, Thomssen C. St. Gallen 2011: Summary of the Consensus Discussion. Breast Care (Basel) 2011;6:136–41.CrossRefGoogle Scholar
  17. 17.
    Cortazar P, Zhang L, Untch M, Mehta K, Costantino J, Wolmark N, et al. Meta-analysis results from the Collaborative Trials in Neoadjuvant Breast Cancer (CTNeoBC). Presented at the San Antonio Breast Cancer Symposium, Texas, USA, 4–8 December 2012.Google Scholar
  18. 18.
    Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S, et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol 2009;27:535–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L, et al. [18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2007;34:1915–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 2006;24:5366–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Humbert O, Berriolo-Riedinger A, Riedinger JM, Coudert B, Arnould L, Cochet A, et al. Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes. Ann Oncol 2012;23:2572–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N, et al. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC Cancer 2011;11:452.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 1991;19:403–10. Histopathology 2002;41:151–2, discussion.Google Scholar
  24. 24.
    Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF, et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 2005;23:5983–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Zafrani B, Aubriot MH, Mouret E, De Crémoux P, De Rycke Y, Nicolas A, et al. High sensitivity and specificity of immunohistochemistry for the detection of hormone receptors in breast carcinoma: comparison with biochemical determination in a prospective study of 793 cases. Histopathology 2000;37:536–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007;25:118–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Lips EH, Mulder L, de Ronde JJ, Mandjes IA, Vincent A, Vrancken Peeters MT, et al. Neoadjuvant chemotherapy in ER+ HER2- breast cancer: response prediction based on immunohistochemical and molecular characteristics. Breast Cancer Res Treat 2012;131:827–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Esserman LJ, Berry DA, Cheang MC, Yau C, Perou CM, Carey L, et al. Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 2012;132:1049–62.Google Scholar
  29. 29.
    Buck A, Schirrmeister H, Kühn T, Shen C, Kalker T, Kotzerke J, et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 2002;29:1317–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Vranjesevic D, Schiepers C, Silverman DH, Quon A, Villalpando J, Dahlbom M, et al. Relationship between 18F-FDG uptake and breast density in women with normal breast tissue. J Nucl Med 2003;44:1238–42.PubMedGoogle Scholar
  31. 31.
    Kanstrup IL, Klausen TL, Bojsen-Møller J, Magnusson P, Zerahn B. Variability and reproducibility of hepatic FDG uptake measured as SUV as well as tissue-to-blood background ratio using positron emission tomography in healthy humans. Clin Physiol Funct Imaging 2009;29:108–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Katz A, Saad ED, Porter P, Pusztai L. Primary systemic chemotherapy of invasive lobular carcinoma of the breast. Lancet Oncol 2007;8:55–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Colleoni M, Viale G, Goldhirsch A. Lessons on responsiveness to adjuvant systemic therapies learned from the neoadjuvant setting. Breast 2009;18 Suppl 3:S137–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Semiglazov VF, Semiglazov VV, Dashyan GA, Ziltsova EK, Ivanov VG, Bozhok AA, et al. Phase 2 randomized trial of primary endocrine therapy versus chemotherapy in postmenopausal patients with estrogen receptor-positive breast cancer. Cancer 2007;110:244–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Alba E, Calvo L, Albanell J, De la Haba JR, Arcusa Lanza A, Chacon JI, et al. Chemotherapy (CT) and hormonotherapy (HT) as neoadjuvant treatment in luminal breast cancer patients: results from the GEICAM/2006-03, a multicenter, randomized, phase-II study. Ann Oncol 2012;23:3069–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 2011;52 Suppl 2:93S–100S.PubMedCrossRefGoogle Scholar
  37. 37.
    Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009;50 Suppl 1:11S–20S.PubMedCrossRefGoogle Scholar
  39. 39.
    Haque R, Ahmed SA, Inzhakova G, Shi J, Avila C, Polikoff J, et al. Impact of breast cancer subtypes and treatment on survival: an analysis spanning two decades. Cancer Epidemiol Biomarkers Prev 2012;21:1848–55.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Humbert
    • 1
    • 6
    • 7
    Email author
  • Alina Berriolo-Riedinger
    • 1
  • Alexandre Cochet
    • 1
    • 7
  • Mélanie Gauthier
    • 2
  • Céline Charon-Barra
    • 3
  • Séverine Guiu
    • 4
  • Isabelle Desmoulins
    • 4
  • Michel Toubeau
    • 1
  • Inna Dygai-Cochet
    • 1
  • Charles Coutant
    • 5
  • Pierre Fumoleau
    • 4
  • François Brunotte
    • 1
    • 6
    • 7
  1. 1.Department of Nuclear MedicineCentre GF LeclercDijonFrance
  2. 2.Biostatistics and Quality of Life Unit, EA 4184Centre GF LeclercDijonFrance
  3. 3.Department of PathologyCentre GF LeclercDijonFrance
  4. 4.Department of Medical OncologyCentre GF LeclercDijonFrance
  5. 5.Department of SurgeryCentre GF LeclercDijonFrance
  6. 6.Imaging DepartmentCHU Le BocageDijonFrance
  7. 7.Université de Bourgogne, UMR CNRS 5158DijonFrance

Personalised recommendations