In vitro and in vivo direct monitoring of miRNA-22 expression in isoproterenol-induced cardiac hypertrophy by bioluminescence imaging

  • Yingfeng Tu
  • Lin Wan
  • Dongliang Zhao
  • Lihong Bu
  • Dandan Dong
  • Zheyu Yin
  • Zhen Cheng
  • Baozhong Shen
Original Article



Growing evidence suggests that microRNAs (miRNAs) play key roles in cardiac hypertrophy. To measure the expression of endogenous miRNAs is very conducive to understanding the importance of miRNAs in cardiac hypertrophy. However, current methods to monitor endogenous miRNA levels, such as Northern blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and microarrays cannot provide real-time information on miRNA biogenesis in vivo.


We constructed a miRNA reporter imaging system to monitor miR-22 expression in isoproterenol-induced cardiac hypertrophy repetitively and noninvasively. There were three copies of the antisense of miR-22 (3×PT_miR-22) cloned into the 3′ untranslated region (UTR) of the Gaussia luciferase (Gluc) reporter genes under the control of the cytomegalovirus (CMV) promoter in this miRNA reporter system (CMV/Gluc/3×PT_miR-22). CMV/firefly luciferase (Fluc) was used as a positive control for imaging of miR-22 expression. Meanwhile, quantifications of miR-22 in cardiomyocyte hypertrophy and in mouse cardiac hypertrophy induced by isoproterenol stimulation were measured by qRT-PCR. Furthermore, we used this miRNA reporter imaging system to appraise the antihypertrophic effect of antagomir-22 in vitro and in vivo.


The bioluminescence signals of the CMV/Gluc/3×PT_miR-22 were gradually decreased with prolongation of isoproterenol intervention in vitro and in vivo. Overexpression of miR-22 was observed in cardiac hypertrophy, and markedly administration of antagomir-22 could reverse the upregulation of miR-22 and its prohypertrophic effects. Furthermore, knockdown of miR-22 by antagomir-22 could markedly reverse the repressed Gluc activities in vitro and in vivo. However, the Fluc activity of CMV/Fluc was not affected with isoproterenol treatment.


This study elucidates the feasibility of using our constructed miRNA reporter imaging system to monitor the location and magnitude of expression levels of miR-22 in cardiac hypertrophy in vitro and in vivo.


Cardiac hypertrophy miRNA-22 Bioluminescence imaging Firefly luciferase Gaussia luciferase 



Cardiac hypertrophy






Quantitative real-time polymerase chain reaction




Bioluminescence imaging


Firefly luciferase


Gaussia luciferase


Green fluorescent protein


Red fluorescent protein


Atrial natriuretic peptide


Brain natriuretic peptide


Beta-myosin heavy chain



The authors thank Dr. Tao Huang and Dr. Kai Wang for valuable suggestions for the design and manuscript revision. We also thank Xilin Sun for technical assistance in bioluminescence imaging study. This work was supported by key science and technology research projects of Harbin Municipal (2007AA3CS085), China Postdoctoral Science Foundation (20070420105), National Natural Science Foundation of China (30970807), the International Cooperation and Exchanges Program of the National Ministry of Science and Technology (2009DFB30040), China Postdoctoral Special Science Foundation, and the Ph.D. Programs Foundation of the Ministry of Education of China (200801305), National Natural Science Foundation of China (31210103913).

Conflicts of interest


Supplementary material

259_2013_2596_MOESM1_ESM.doc (90 kb)
ESM 1 (DOC 90 kb)


  1. 1.
    Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013;112:1234–43. doi: 10.1161/CIRCRESAHA.112.300682.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bourajjaj M, Armand AS, da Costa Martins PA, Weijts B, van der Nagel R, Heeneman S, et al. NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. J Biol Chem 2008;283:22295–303. doi: 10.1074/jbc.M801296200.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.PubMedCrossRefGoogle Scholar
  4. 4.
    Benfey PN. Molecular biology: microRNA is here to stay. Nature 2003;425:244–5. doi: 10.1038/425244a.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, et al. In vivo monitoring of angiogenesis inhibition via down-regulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One 2013;8:e71472. doi: 10.1371/journal.pone.0071472.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013;288:11216–32. doi: 10.1074/jbc.M112.442384.PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 2010;87:431–9. doi: 10.1093/cvr/cvq082.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, et al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 2013;127:2097–106. doi: 10.1161/CIRCULATIONAHA.112.000882.PubMedCrossRefGoogle Scholar
  9. 9.
    Lok SI, van Mil A, Bovenschen N, van der Weide P, van Kuik J, van Wichen D, et al. Post-transcriptional regulation of alpha-1-antichymotrypsin by microRNA-137 in chronic heart failure and mechanical support. Circ Heart Fail 2013;6:853–61. doi: 10.1161/CIRCHEARTFAILURE.112.000255.Google Scholar
  10. 10.
    Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: implications in postnatal cardiac remodeling and cell survival. J Biol Chem 2012;287:12913–26. doi: 10.1074/jbc.M111.331751.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yang KC, Ku YC, Lovett M, Nerbonne JM. Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3Kalpha signaling in cardiac hypertrophy. J Mol Cell Cardiol 2012;53:101–12. doi: 10.1016/j.yjmcc.2012.04.012.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007;100:416–24. doi: 10.1161/01.RES.0000257913.42552.23.PubMedCrossRefGoogle Scholar
  13. 13.
    Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 2012;227:1391–8. doi: 10.1002/jcp.22852.PubMedCrossRefGoogle Scholar
  14. 14.
    Tu Y, Wan L, Bu L, Zhao D, Dong D, Huang T, et al. MicroRNA-22 downregulation by atorvastatin in a mouse model of cardiac hypertrophy: a new mechanism for antihypertrophic intervention. Cell Physiol Biochem 2013;31:997–1008. doi: 10.1159/000350117.PubMedCrossRefGoogle Scholar
  15. 15.
    Belmont PJ, Chen WJ, Thuerauf DJ, Glembotski CC. Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 2012;52:1176–82. doi: 10.1016/j.yjmcc.2012.01.017.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wang J, Xu R, Lin F, Zhang S, Zhang G, Hu S, et al. MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 2009;113:81–8. doi: 10.1159/000172616.PubMedCrossRefGoogle Scholar
  17. 17.
    Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci 2010;123:2444–52. doi: 10.1242/jcs.067165.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci 2012;69:3561–70. doi: 10.1007/s00018-012-1126-y.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ucar A, Gupta SK, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012;3:1078. doi: 10.1038/ncomms2090.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007;316:575–9. doi: 10.1126/science.1139089.PubMedCrossRefGoogle Scholar
  21. 21.
    Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A 2009;106:12103–8.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Han M, Yang Z, Sayed D, He M, Gao S, Lin L, et al. GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc Res 2012;93:645–54. doi: 10.1093/cvr/cvs001.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Shieh JT, Huang Y, Gilmore J, Srivastava D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One 2011;6:e19481. doi: 10.1371/journal.pone.0019481.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Inoue Y, Kiryu S, Izawa K, Watanabe M, Tojo A, Ohtomo K. Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging. Eur J Nucl Med Mol Imaging 2009;36:771–9. doi: 10.1007/s00259-008-1022-8.PubMedCrossRefGoogle Scholar
  25. 25.
    Berger F, Paulmurugan R, Bhaumik S, Gambhir SS. Uptake kinetics and biodistribution of 14C-D-luciferin–a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging 2008;35:2275–85. doi: 10.1007/s00259-008-0870-6.PubMedCrossRefGoogle Scholar
  26. 26.
    do Hwang W, Jang SJ, Kim YH, Kim HJ, Shim IK, Jeong JM, et al. Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds. Eur J Nucl Med Mol Imaging 2008;35:1887–98. doi: 10.1007/s00259-008-0751-z.CrossRefGoogle Scholar
  27. 27.
    Inoue Y, Sheng F, Kiryu S, Watanabe M, Ratanakanit H, Izawa K, et al. Gaussia luciferase for bioluminescence tumor monitoring in comparison with firefly luciferase. Mol Imaging 2011;10:377–85. doi: 10.2310/7290.2010.00057.PubMedGoogle Scholar
  28. 28.
    Kim HJ, Chung JK, do Hwang W, Lee DS, Kim S. In vivo imaging of miR-221 biogenesis in papillary thyroid carcinoma. Mol Imaging Biol 2009;11:71–8. doi: 10.1007/s11307-008-0188-6.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JY, Kim S, do Hwang W, Jeong JM, Chung JK, Lee MC, et al. Development of a dual-luciferase reporter system for in vivo visualization of microRNA biogenesis and posttranscriptional regulation. J Nucl Med 2008;49:285–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Ko HY, do Hwang W, Lee DS, Kim S. A reporter gene imaging system for monitoring microRNA biogenesis. Nat Protoc 2009;4:1663–9. doi: 10.1038/nprot.2009.119.PubMedCrossRefGoogle Scholar
  31. 31.
    Ko HY, Lee DS, Kim S. Noninvasive imaging of microRNA124a-mediated repression of the chromosome 14 ORF 24 gene during neurogenesis. FEBS J 2009;276:4854–65. doi: 10.1111/j.1742-4658.2009.07185.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Ko MH, Kim S, do Hwang W, Ko HY, Kim YH, Lee DS. Bioimaging of the unbalanced expression of microRNA9 and microRNA9* during the neuronal differentiation of P19 cells. FEBS J 2008;275:2605–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu JC, Sundaresan G, Iyer M, Gambhir SS. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001;4:297–306. doi: 10.1006/mthe.2001.0460.PubMedCrossRefGoogle Scholar
  34. 34.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685–9. doi: 10.1038/nature04303.PubMedCrossRefGoogle Scholar
  35. 35.
    Kenanova V, Barat B, Olafsen T, Chatziioannou A, Herschman HR, Braun J, et al. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging. Eur J Nucl Med Mol Imaging 2009;36:104–14. doi: 10.1007/s00259-008-0921-z.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007;42:1137–41. doi: 10.1016/j.yjmcc.2007.04.004.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kelly M, Bagnall RD, Peverill RE, Donelan L, Corben L, Delatycki MB, et al. A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J Mol Cell Cardiol 2011;51:848–54. doi: 10.1016/j.yjmcc.2011.07.001.PubMedCrossRefGoogle Scholar
  38. 38.
    Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 2004;3:9–23. doi: 10.1162/153535004773861688.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yingfeng Tu
    • 1
    • 2
  • Lin Wan
    • 1
  • Dongliang Zhao
    • 1
  • Lihong Bu
    • 1
  • Dandan Dong
    • 1
  • Zheyu Yin
    • 1
  • Zhen Cheng
    • 3
  • Baozhong Shen
    • 1
  1. 1.Radiology Department and Molecular Imaging CenterThe Fourth Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Department of CardiologyThe Fourth Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  3. 3.Molecular Imaging Program at Stanford, Department of Radiology and Bio-X ProgramStanford UniversityStanfordUSA

Personalised recommendations