Advertisement

Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality

  • Dale L. BaileyEmail author
  • Kathy P. Willowson
Original Article

Abstract

The introduction of combined modality single photon emission computed tomography (SPECT)/CT cameras has revived interest in quantitative SPECT. Schemes to mitigate the deleterious effects of photon attenuation and scattering in SPECT imaging have been developed over the last 30 years but have been held back by lack of ready access to data concerning the density of the body and photon transport, which we see as key to producing quantitative data. With X-ray CT data now routinely available, validations of techniques to produce quantitative SPECT reconstructions have been undertaken. While still suffering from inferior spatial resolution and sensitivity compared to positron emission tomography (PET) imaging, SPECT scans nevertheless can be produced that are as quantitative as PET scans. Routine corrections are applied for photon attenuation and scattering, resolution recovery, instrumental dead time, radioactive decay and cross-calibration to produce SPECT images in units of kBq.ml−1. Though clinical applications of quantitative SPECT imaging are lacking due to the previous non-availability of accurately calibrated SPECT reconstructions, these are beginning to emerge as the community and industry focus on producing SPECT/CT systems that are intrinsically quantitative.

Keywords

SPECT Quantitative 

References

  1. 1.
    Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 2012;53(8):1207–15. PubMed PMID: 22782315. Epub 2012/07/12. eng.PubMedCrossRefGoogle Scholar
  2. 2.
    Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;NS-25:638–43.CrossRefGoogle Scholar
  3. 3.
    Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28(5):844–51.PubMedGoogle Scholar
  4. 4.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–22.CrossRefGoogle Scholar
  5. 5.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;MI-13(4):601–9.CrossRefGoogle Scholar
  6. 6.
    Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998;25(7):774–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Moore SC. Attenuation compensation. In: Ell PJ, Holman BL, editors. Computed emission tomography. London: Oxford University Press; 1982. p. 339–60.Google Scholar
  8. 8.
    Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.PubMedCrossRefGoogle Scholar
  9. 9.
    LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994;41(6):2793–9.CrossRefGoogle Scholar
  10. 10.
    Brown S, Bailey DL, Willowson K, Baldock CA. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging 2007;34(9):1415–26. PubMed PMID: 17372731. Epub 2007/03/21. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Beyer T, Kinahan PE, Townsend DW, Sashin D, editors. The use of X-ray CT for attenuation correction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference. Norfolk: Institute of Electrical and Electronics Engineers; 1994.Google Scholar
  13. 13.
    Blankespoor S, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43(4):2263–74.CrossRefGoogle Scholar
  14. 14.
    Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50(5):1510–5.CrossRefGoogle Scholar
  15. 15.
    Larsson A, Johansson L, Sundström T, Riklund-Ahlström K. A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Commun 2003;24:411–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997;42(8):1619–32. PubMed PMID: 9279910. Epub 1997/08/01. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43(4):857–73. PubMed PMID: 9572510. Pubmed Central PMCID: 2808130. Epub 1998/05/08. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Buvat I, Rodrigues-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476–88.PubMedGoogle Scholar
  19. 19.
    El Fakhri G, Buvat I, Benali H, Todd-Pokropek AE, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41(8):1400–8.PubMedGoogle Scholar
  20. 20.
    Jaszczak RJ, Greer KL, Floyd CE, Harris CG, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900.PubMedGoogle Scholar
  21. 21.
    Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34(12):2216–21. PubMed PMID: 8254414. Epub 1993/12/01. eng.PubMedGoogle Scholar
  22. 22.
    Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.PubMedCrossRefGoogle Scholar
  23. 23.
    Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994;35(2):360–7.PubMedGoogle Scholar
  24. 24.
    Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25:490–4.PubMedGoogle Scholar
  25. 25.
    Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28:1861–9.PubMedGoogle Scholar
  26. 26.
    Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1993;38:1359–70.CrossRefGoogle Scholar
  27. 27.
    Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44(4):512–9.PubMedGoogle Scholar
  28. 28.
    Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996;41:2481–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Bailey DL, Hutton BF, Meikle SR. Development of an iterative scatter correction technique for SPECT. Aust N Z J Med 1988;18:501. Abstract.Google Scholar
  30. 30.
    Ljungberg M, Strand S-E. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 1991;32:1278–84.PubMedGoogle Scholar
  31. 31.
    Mukai T, Links JM, Douglass KH, Wagner Jr HN. Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 1988;33(10):1129–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500.PubMedGoogle Scholar
  33. 33.
    Siegel JA, Maurer AH, Wu RK, Blasius KM, Denenberg BS, Gash AK, et al. Absolute left ventricular volume by an iterative build-up factor analysis of gated radionuclide images. Radiology 1984;151:477–81.PubMedGoogle Scholar
  34. 34.
    Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998;39(1):181–9.PubMedGoogle Scholar
  35. 35.
    Kim KM, Watabe H, Shidahara M, Ishida Y, Iida H. SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies. IEEE Trans Nucl Sci 2001;NS-48(June):689–96.Google Scholar
  36. 36.
    Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003;48(21):N323–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 2011;11:56–66. PubMed PMID: 21684829. Pubmed Central PMCID: 3205754. Epub 2011/06/21. eng.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Cranley K, Millar R, Bell T. Correction for deadtime losses in a gamma camera/data analysis system. Eur J Nucl Med 1980;5:377–82.PubMedCrossRefGoogle Scholar
  39. 39.
    Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010;51(6):921–8. PubMed PMID: 20484423.PubMedCrossRefGoogle Scholar
  40. 40.
    Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3(3):299–308.PubMedCrossRefGoogle Scholar
  42. 42.
    Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54(1):83–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Willowson K, Bailey DL, Bailey EA, Baldock C, Roach PJ. In vivo validation of quantitative SPECT in the heart. Clin Physiol Funct Imaging 2010;30(3):214–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Iida H, Nakagawara J, Hayashida K, Fukushima K, Watabe H, Koshino K, et al. Multicenter evaluation of a standardized protocol for rest and acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med 2010;51(10):1624–31. PubMed PMID: 20847163. Epub 2010/09/18. eng.PubMedCrossRefGoogle Scholar
  45. 45.
    Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013;3(1):45. PubMed PMID: 23738809. Pubmed Central PMCID: 3680030.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 2008;53(17):4595–604. PubMed PMID: 18678930. Epub 2008/08/06. eng.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, Royal North Shore Hospital, Faculty of Health SciencesUniversity of SydneySydneyAustralia
  2. 2.Department of Nuclear MedicineRoyal North Shore HospitalSt LeonardsAustralia
  3. 3.Department of Nuclear Medicine, Royal North Shore Hospital, School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations