Advertisement

Automated quantitative coronary computed tomography correlates of myocardial ischaemia on gated myocardial perfusion SPECT

  • Michiel A. de Graaf
  • Heba M. El-Naggar
  • Mark J. Boogers
  • Caroline E. Veltman
  • Alexander Broersen
  • Pieter H. Kitslaar
  • Jouke Dijkstra
  • Lucia J. Kroft
  • Imad Al Younis
  • Johan H. Reiber
  • Jeroen J. Bax
  • Victoria Delgado
  • Arthur J. ScholteEmail author
Original Article

Abstract

Purpose

Automated software tools have permitted more comprehensive, robust and reproducible quantification of coronary stenosis, plaque burden and plaque location of coronary computed tomography angiography (CTA) data. The association between these quantitative CTA (QCT) parameters and the presence of myocardial ischaemia has not been explored. The aim of the present investigation was to evaluate the association between QCT parameters of coronary artery lesions and the presence of myocardial ischaemia on gated myocardial perfusion single-photon emission CT (SPECT).

Methods

Included in the study were 40 patients (mean age 58.2 ± 10.9 years, 27 men) with known or suspected coronary artery disease (CAD) who had undergone multidetector row CTA and gated myocardial perfusion SPECT within 6 months. From the CTA datasets, vessel-based and lesion-based visual analyses were performed. Consecutively, lesion-based QCT was performed to assess plaque length, plaque burden, percentage lumen area stenosis and remodelling index. Subsequently, the presence of myocardial ischaemia was assessed using the summed difference score (SDS ≥2) on gated myocardial perfusion SPECT.

Results

Myocardial ischaemia was seen in 25 patients (62.5 %) in 37 vascular territories. Quantitatively assessed significant stenosis and quantitatively assessed lesion length were independently associated with myocardial ischaemia (OR 7.72, 95 % CI 2.41–24.7, p < 0.001, and OR 1.07, 95 % CI 1.00–1.45, p = 0.032, respectively) after correcting for clinical variables and visually assessed significant stenosis. The addition of quantitatively assessed significant stenosis (χ 2 = 20.7) and lesion length (χ 2 = 26.0) to the clinical variables and the visual assessment (χ 2 = 5.9) had incremental value in the association with myocardial ischaemia.

Conclusion

Coronary lesion length and quantitatively assessed significant stenosis were independently associated with myocardial ischaemia. Both quantitative parameters have incremental value over baseline variables and visually assessed significant stenosis. Potentially, QCT can refine assessment of CAD, which may be of potential use for identification of patients with myocardial ischaemia.

Keywords

Automated quantification Computed tomography Coronary plaque Myocardial ischaemia Gated single-photon emission computed tomography 

Notes

Funding

Michiel A. de Graaf is supported by the Dutch Technology Foundation STW, grant 10084. Mark J. Boogers is supported by the Dutch Heart Foundation, grant 2006T102. Caroline E. Veltman is financially supported by a research grant from the Interuniversity Cardiology Institute of The Netherlands (ICIN, Utrecht, The Netherlands). The department of Cardiology received research grants from Biotronik, Medtronic, Boston Scientific Corporation, St Jude Medical, Lantheus Medical Imaging and GE Healthcare. This work was supported by SenterNovem, Ministry of Economic Affairs, The Hague, The Netherlands (project ADVANCE ISO 44070) and the Dutch Technology Foundation STW, Utrecht, The Netherlands (grant 10084). Hans Reiber is the Chief Executive Officer of Medis medical imaging systems B.V. and Professor of Medical Imaging at the Leiden University Medical Centre.

Conflicts of interest

The remaining authors have no conflicts of interest to disclose.

References

  1. 1.
    Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M, et al. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006;48:1896–910.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffmann MH, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, et al. Noninvasive coronary angiography with multislice computed tomography. JAMA. 2005;293:2471–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.PubMedCrossRefGoogle Scholar
  4. 4.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.PubMedCrossRefGoogle Scholar
  5. 5.
    von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med. 2011;154:413–20.CrossRefGoogle Scholar
  6. 6.
    Hacker M, Jakobs T, Hack N, Nikolaou K, Becker C, von Ziegler F, et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging. 2007;34:4–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Naya M, Murthy VL, Blankstein R, Sitek A, Hainer J, Foster C, et al. Quantitative relationship between the extent and morphology of coronary atherosclerotic plaque and downstream myocardial perfusion. J Am Coll Cardiol. 2011;58:1807–16.PubMedCrossRefGoogle Scholar
  8. 8.
    van Velzen JE, Schuijf JD, van Werkhoven JM, Herzog BA, Pazhenkottil AP, Boersma E, et al. Predictive value of multislice computed tomography variables of atherosclerosis for ischemia on stress-rest single-photon emission computed tomography. Circ Cardiovasc Imaging. 2010;3:718–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J. 2012;33:1007–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831–7.PubMedGoogle Scholar
  11. 11.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med. 2000;41:712–9.PubMedGoogle Scholar
  13. 13.
    Hachamovitch R, Berman DS, Kiat H, Cohen I, Lewin H, Amanullah A, et al. Incremental prognostic value of adenosine stress myocardial perfusion single-photon emission computed tomography and impact on subsequent management in patients with or suspected of having myocardial ischemia. Am J Cardiol. 1997;80:426–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Berman DS, Kang X, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1998;32:1987–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Fleiss JL. Statistical methods for rates and proportions, 2nd ed. New York: Wiley; 1981.Google Scholar
  17. 17.
    Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48:2508–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Azzarelli S, Galassi AR, Foti R, Mammana C, Musumeci S, Giuffrida G, et al. Accuracy of 99mTc-tetrofosmin myocardial tomography in the evaluation of coronary artery disease. J Nucl Cardiol. 1999;6:183–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Benoit T, Vivegnis D, Lahiri A, Itti R, Braat S, Rigo P. Tomographic myocardial imaging with technetium-99m tetrofosmin. Comparison with tetrofosmin and thallium planar imaging and with angiography. Eur Heart J. 1996;17:635–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Sacchetti G, Inglese E, Bongo AS, Aina F, Brambilla M, Baroli A, et al. Detection of moderate and severe coronary artery stenosis with technetium-99m tetrofosmin myocardial single-photon emission tomography. Eur J Nucl Med. 1997;24:1230–6.PubMedCrossRefGoogle Scholar
  21. 21.
    De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation. 2001;104:2401–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Marcus ML, Harrison DG, White CW, McPherson DD, Wilson RF, Kerber RE. Assessing the physiologic significance of coronary obstructions in patients: importance of diffuse undetected atherosclerosis. Prog Cardiovasc Dis. 1988;31:39–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin F, Shaw LJ, Berman DS, Callister TQ, Weinsaft JW, Wong FJ, et al. Multidetector computed tomography coronary artery plaque predictors of stress-induced myocardial ischemia by SPECT. Atherosclerosis. 2008;197:700–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Cheng V, Gutstein A, Wolak A, Suzuki Y, Dey D, Gransar H, et al. Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging. 2008;1:460–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46:552–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Boogers MJ, Schuijf JD, Kitslaar PH, van Werkhoven JM, de Graaf FR, Boersma E, et al. Automated quantification of stenosis severity on 64-slice CT: a comparison with quantitative coronary angiography. JACC Cardiovasc Imaging. 2010;3:699–709.PubMedCrossRefGoogle Scholar
  28. 28.
    Meimoun P, Sayah S, Luycx-Bore A, Boulanger J, Elmkies F, Benali T, et al. Comparison between non-invasive coronary flow reserve and fractional flow reserve to assess the functional significance of left anterior descending artery stenosis of intermediate severity. J Am Soc Echocardiogr. 2011;24:374–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van' t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.PubMedCrossRefGoogle Scholar
  30. 30.
    De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.PubMedCrossRefGoogle Scholar
  31. 31.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.PubMedGoogle Scholar
  32. 32.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michiel A. de Graaf
    • 1
    • 2
  • Heba M. El-Naggar
    • 1
  • Mark J. Boogers
    • 1
    • 2
  • Caroline E. Veltman
    • 1
    • 2
  • Alexander Broersen
    • 3
  • Pieter H. Kitslaar
    • 3
  • Jouke Dijkstra
    • 3
  • Lucia J. Kroft
    • 4
  • Imad Al Younis
    • 5
  • Johan H. Reiber
    • 3
    • 6
  • Jeroen J. Bax
    • 1
  • Victoria Delgado
    • 1
  • Arthur J. Scholte
    • 1
    • 7
    Email author
  1. 1.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.The Interuniversity Cardiology Institute of The NetherlandsUtrechtThe Netherlands
  3. 3.Department of Radiology, Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands
  4. 4.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  5. 5.Department of Nuclear MedicineLeiden University Medical CenterLeidenThe Netherlands
  6. 6.Medis medical imaging systems B.V.LeidenThe Netherlands
  7. 7.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations