Advertisement

Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours

  • Christophe Van de WieleEmail author
  • Vibeke Kruse
  • Peter Smeets
  • Mike Sathekge
  • Alex Maes
Review Article

Abstract

Data available in patients suffering from squamous cell carcinoma of the head and neck, lung carcinoma, oesophageal carcinoma and gynaecological malignancies suggest that metabolic tumour volume and to a lesser extent total lesion glycolysis have the potential to become valuable in the imaging of human solid tumours as prognostic biomarkers for short- to intermediate-term survival outcomes, adding value to clinical staging, for assessment of response to treatment with neoadjuvant and concurrent chemotherapy, and for treatment optimization; for example, based on early treatment response assessment using changes in metabolic tumour volume over time, it might be possible to select patients who require a more aggressive treatment to improve their outcome. Prospective studies enrolling consecutive patients, adopting standardized protocols for FDG PET acquisition and processing, adjusting for potential confounders in the analysis (tumour size and origin) and determining the optimal methodology for determination of these novel markers are mandatory.

Key words

Metabolic tumour volume Total lesion glycolysis Solid tumours 

Notes

Conflicts of interest

None.

References

  1. 1.
    Murchison JT. TNM staging update for lung cancer: why is this important? World J Radiol. 2012;4:126–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Ball DL, Fisher R, Burmeister B, Graham P, Joseph D, Penniment M, et al. Stage is not a reliable indicator of tumor volume in non-small cell lung cancer: a preliminary analysis of the Trans-Tasman Radiation Oncology Group 99-05 database. J Thorac Oncol. 2006;1:667–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Doweck I, Denys D, Robbins KT. Tumor volume predicts outcome for advanced head and neck cancer treated with targeted chemoradiotherapy. Laryngoscope. 2002;112:1742–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Plataniotis GA, Theofanopoulou ME, Kalogera-Fountzila A, Haritanti A, Ciuleanou E, Ghilezan N, et al. Prognostic impact of tumor volumetry in patients with locally advanced head-and-neck carcinoma (non-nasopharyngeal) treated by radiotherapy alone or combined radiochemotherapy in a randomized trial. Int J Radiat Oncol Biol Phys. 2004;59:1018–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Frings V, de Langen AJ, Smit EF, van Velden FH, Hoekstra OS, van Tinteren H, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med. 2010;51:1870–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Cheebsumon P, van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM, Hayes W, Hoekstra OS, et al. Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res. 2011;1:35.PubMedCrossRefGoogle Scholar
  7. 7.
    American Cancer Society. Cancer Facts and Figures. www.cancer.org/Research/CancerFactsFigures/Index. Accessed 2 Nov 2012.
  8. 8.
    van der Schroeff MP, Baatenburg de Jong RJ. Staging and prognosis in head and neck cancer. Oral Oncol. 2009;45:356–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Xie P, Li M, Zhao H, Sun X, Fu Z, Yu J. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol. 2011;137:1085–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta T, Master Z, Kannan S, Agarwal JP, Ghsoh-Laskar S, Rangarajan V, et al. Diagnostic performance of post-treatment FDG PET or FDG PET/CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38:2083–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Chung MK, Jeong HS, Son YI, So YK, Park GY, Choi JY, et al. Metabolic tumor volumes by [18F]-fluorodeoxyglucose PET/CT correlate with occult metastasis in oral squamous cell carcinoma of the tongue. Ann Surg Oncol. 2009;16:3111–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Dibble EH, Alvarez AC, Truong MT, Mercier G, Cook EF, Subramaniam RM. 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med. 2012;53:709–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Moon SH, Choi JY, Lee HJ, Son YI, Baek CH, Ahn YC, et al. Prognostic value of (18)F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters. Head Neck. 2012. doi: 10.1002/hed.22904.
  14. 14.
    Chan SC, Chang JT, Lin CY, Ng SH, Wang HM, Liao CT, et al. Clinical utility of 18F-FDG PET parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun. 2011;32:989–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Xie P, Yue JB, Zhao HX, Sun XD, Kong L, Fu Z, et al. Prognostic value of 18F-FDG PET-CT metabolic index for nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2010;136:883–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Kao CH, Lin SC, Hsieh TC, Yen KY, Yang SN, Wang YC, et al. Use of pretreatment metabolic tumour volumes to predict the outcome of pharyngeal cancer treated by definitive radiotherapy. Eur J Nucl Med Mol Imaging. 2012;39:1297–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Chung MK, Jeong HS, Park SG, Jang JY, Son YI, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res. 2009;15:5861–8.PubMedCrossRefGoogle Scholar
  18. 18.
    La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2009;74:1335–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Tang C, Murphy JD, Khong B, La TH, Kong C, Fischbein NJ, et al. Validation that metabolic tumor volume predicts outcome in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2012;83:1514–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Deron P, Mertens K, Goethals I, Rottey S, Duprez F, De Neve W, et al. Metabolic tumour volume. Prognostic value in locally advanced squamous cell carcinoma of the head and neck. Nuklearmedizin. 2011;50:141–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Murphy JD, La TH, Chu K, Quon A, Fischbein NJ, Maxim PG, et al. Postradiation metabolic tumor volume predicts outcome in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;80:514–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol. 2010;49:201–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Romesser PB, Qureshi MM, Shah BA, Chatburn LT, Jalisi S, Devaiah AK, et al. Superior prognostic utility of gross and metabolic tumor volume compared to standardized uptake value using PET/CT in head and neck squamous cell carcinoma patients treated with intensity-modulated radiotherapy. Ann Nucl Med. 2012;26:527–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Mountain CF. A new international staging system for lung cancer. 1986. Chest. 2009;136(5 Suppl):e25.PubMedGoogle Scholar
  25. 25.
    Cogen A, Dockx Y, Cheung K, Meulemans E, Lauwers P, Nia P, et al. TNM-classification for lung cancer: from the 7th to the 8th edition. Acta Chir Belg. 2011;111:389–92.PubMedGoogle Scholar
  26. 26.
    Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122:1037–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Yip D, Harper PG. Predictive and prognostic factors in small cell lung cancer: current status. Lung Cancer. 2000;28:173–85.PubMedCrossRefGoogle Scholar
  28. 28.
    de Geus-Oei LF, van der Heijden HF, Corstens FH, Oyen WJ. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer: a systematic review. Cancer. 2007;110:1654–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys. 2007;69:328–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee P, Bazan JG, Lavori PW, Weerasuriya DK, Quon A, Le QT, et al. Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer. 2012;13:52–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Yan H, Wang R, Zhao F, Zhu K, Jiang S, Zhao W, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced non-small cell lung cancer treated by non-surgical therapy. Acta Radiol. 2011;52:646–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19:69–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang H, Wroblewski K, Appelbaum D, Pu Y. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int J Comput Assist Radiol Surg. 2012. doi: 10.1007/s11548-012-0749-7.
  35. 35.
    Kim K, Kim SJ, Kim IJ, Kim YS, Pak K, Kim H. Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected non-small-cell lung cancer. Nucl Med Commun. 2012;33:613–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Meng X, Sun X, Mu D, Xing L, Ma L, Zhang B, et al. Noninvasive evaluation of microscopic tumor extensions using standardized uptake value and metabolic tumor volume in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012;82:960–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38:1628–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu D, Ma T, Niu Z, Zheng J, Han A, Zhao S, Yu J. Prognostic significance of metabolic parameters measured by (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer. 2011;73:332–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Oh JR, Seo JH, Chong A, Min JJ, Song HC, Kim YC, et al. Whole-body metabolic tumour volume of 18F-FDG PET/CT improves the prediction of prognosis in small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:925–35.PubMedCrossRefGoogle Scholar
  40. 40.
    van Loon J, Offermann C, Ollers M, van Elmpt W, Vegt E, Rahmy A, et al. Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I-III small cell lung cancer: a hypothesis generating study. Radiother Oncol. 2011;99:172–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun M. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  42. 42.
    Pennathur A, Luketich J. Resection of esophageal cancer: strategies for optimal management. Ann Thorac Surg. 2008;85:751–6.CrossRefGoogle Scholar
  43. 43.
    Sagar PM, Gauperaa T, Sue-Ling H, McMahon MJ, Johnston D. An audit of the treatment of cancer of the oesophagus. Gut. 1994;35:941–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Lordick F, Ott K, Sendler A. Gastric cancer and adenocarcinoma of the esophagogastric junction: principles of neoadjuvant therapy. Chirurg. 2011;82:968–73.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu W, Xing L, Yue J, Sun X, Sun X, Zhao H, et al. Prognostic significance of SUV on PET/CT in patients with localised oesophagogastric junction cancer receiving neoadjuvant chemotherapy/chemoradiation: a systematic review and meta-analysis. Br J Radiol. 2012;85:e694–701.PubMedCrossRefGoogle Scholar
  46. 46.
    Downey RJ, Akhurst T, Ilson D, Ginsburg R, Bains M, Gonen M, et al. Whole body 18FDG PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol. 2003;21:428–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Flamen P, Van Cutsem E, Lerut A, Cambier J, Haustermans K, Bormans G, et al. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol. 2002;13:361–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Javeri H, Xiao L, Rohren E, Lee J, Liao Z, Hofstetter W, et al. The higher the decrease in the standardized uptake value of positron emission tomography after chemoradiation, the better the survival of patients with gastroesophageal adenocarcinoma. Cancer. 2009;115:5184–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Levine E, Farmer M, Clark P, Mishra G, Ho C, Geisinger K, et al. Predictive value of 18-fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) in the identification of responders to chemoradiation therapy for the treatment of locally advanced esophageal cancer. Ann Surg. 2006;243:472–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Swisher S, Erasmus J, Maish M, Correa A, Macapinlac H, Ajani J, et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Vallbohmer D, Holscher A, Dietlein M, Bollschweiler E, Baldus S, Mönig S, et al. [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2009;250:888–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim M, Ryu J, Kim S, Ahn J, Kim S, Park S, et al. Value of complete metabolic response by 18F-fluorodeoxyglucose-psoitron emission tomography in oesophageal cancer for prediction of pathologic response and survival after preoperative chemoradiotherapy. Eur J Cancer. 2007;43:1385–91.PubMedCrossRefGoogle Scholar
  53. 53.
    Lordick F, Ott K, Krause BJ, Weber WA, Becker K, Stein HJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8:797–805.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhong X, Yu J, Zhang B, Mu D, Zhang W, Li D, et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Mamede M, El Fakhri G, Abreu-e-Lima P, Gandler W, Nosé V, Gerbaudo VH. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann Nucl Med. 2007;21:553–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Roedl JB, Harisinghani MG, Colen RR, Fischman AJ, Blake MA, Mathisen DJ, et al. Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg. 2008;86:1131–8.PubMedCrossRefGoogle Scholar
  57. 57.
    I HS, Kim SJ, Kim IJ, Kim K. Predictive value of metabolic tumor volume measured by 18F-FDG PET for regional lymph node status in patients with esophageal cancer. Clin Nucl Med. 2012;37:442–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Mamede M, Abreu-E-Lima P, Oliva MR, Nosé V, Mamon H, Gerbaudo VH. FDG-PET/CT tumor segmentation-derived indices of metabolic activity to assess response to neoadjuvant therapy and progression-free survival in esophageal cancer: correlation with histopathology results. Am J Clin Oncol. 2007;30:377–88.PubMedCrossRefGoogle Scholar
  60. 60.
    Jayachandran P, Pai RK, Quon A, Graves E, Krakow TE, La T, et al. Postchemoradiotherapy positron emission tomography predicts pathologic response and survival in patients with esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84:471–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Roedl JB, Colen RR, Holalkere NS, Fischman AJ, Choi NC, Blake MA. Adenocarcinomas of the esophagus: response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008;89:278–86.PubMedCrossRefGoogle Scholar
  62. 62.
    Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22:872–80.PubMedCrossRefGoogle Scholar
  63. 63.
    Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14:5236–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110:1738–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Kidd EA, Thomas M, Siegel BA, Dehdashti F, Grigsby PW. Changes in cervical cancer FDG uptake during chemoradiation and association with response. Int J Radiat Oncol Biol Phys. 2012. doi: 10.1016/j.ijrobp.2012.02.056.
  66. 66.
    Chung HH, Kim JW, Han KH, Eo JS, Kang KW, Park NH, et al. Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer. Gynecol Oncol. 2011;120:270–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Sharma DN, Rath GK, Kumar R, Malhotra A, Kumar S, Pandjatcharam J, et al. Positron emission tomography scan for predicting clinical outcome of patients with recurrent cervical carcinoma following radiation therapy. J Cancer Res Ther. 2012;8:23–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366:491–505.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu FY, Chao A, Lai CH, Chou HH, Yen TC. Metabolic tumor volume by 18F-FDG PET/CT is prognostic for stage IVB endometrial carcinoma. Gynecol Oncol. 2012;125:566–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Chung HH, Kwon HW, Kang KW, Park NH, Song YS, Chung JK, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19:1966–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Okada M, Shimono T, Komeya Y, Ando R, Kagawa Y, Katsube T, et al. Adrenal masses: the value of additional fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in differentiating between benign and malignant lesions. Ann Nucl Med. 2009;23:349–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Tann M, Sandrasegaran K, Jennings S, Skandarajah A, McHenry L, Schmidt C. Positron-emission tomography and computed tomography of cystic pancreatic masses. Clin Radiol. 2007;62:745–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Orlacchio A, Schillaci O, Antonelli L, D’Urso S, Sergiacomi G, Nicoli P, Simonetti G. Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med. 2007;112:157–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Visual and semiquantitative analyses for F-18 fluorodeoxyglucose PET scanning in pulmonary nodules 1 cm to 3 cm in size. Ann Thorac Surg. 2005;79:948–88.CrossRefGoogle Scholar
  75. 75.
    Kang W, Chung J, So Y, Jeong J, Lee D, Lee M. Differentiation of mediastinal FDG uptake observed in patients with non-thoracic tumours. Eur J Nucl Med Mol Imaging. 2004;31:202–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Nakamoto Y, Higashi T, Sakahara H, Ishimori T, Kobayahsi H, Ishizu K, et al. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer. 2000;89:2547–54.PubMedCrossRefGoogle Scholar
  77. 77.
    Erdi Y, Mawlawi O, Larson S, Imbriaco M, Yeung H, Finn R, Humm J. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;15:2505–20509.CrossRefGoogle Scholar
  78. 78.
    Zasadny K, Kison P, Francis R, Wahl R. FDG-PET determination of metabolically active tumor volume and comparison with CT. Clin Positron Imaging. 1998;1:123–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Murphy JD, Chisholm KM, Daly ME, Wiegner EA, Truong D, Iagaru A, et al. Correlation between metabolic tumor volume and pathologic tumor volume in squamous cell carcinoma of the oral cavity. Radiother Oncol. 2011;101:356–61.PubMedCrossRefGoogle Scholar
  80. 80.
    Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med. 2006;47:1808–12.PubMedGoogle Scholar
  81. 81.
    Minn H, Clavo AC, Grénman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med. 1995;36:252–8.PubMedGoogle Scholar
  82. 82.
    Minn H, Clavo AC, Wahl RL. Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol. 1996;23:941–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christophe Van de Wiele
    • 1
    Email author
  • Vibeke Kruse
    • 2
  • Peter Smeets
    • 2
    • 3
  • Mike Sathekge
    • 4
  • Alex Maes
    • 5
    • 6
  1. 1.Department of Nuclear Medicine, P7University Hospital GhentGhentBelgium
  2. 2.Division of Medical Oncology, Department of Internal medicineUniversity Hospital GhentGhentBelgium
  3. 3.Department of RadiologyUniversity Hospital GhentGhentBelgium
  4. 4.Department of Nuclear MedicineUniversity of PretoriaPretoriaSouth Africa
  5. 5.Department of Nuclear MedicineAZ GroeningeKortrijkBelgium
  6. 6.Department of Morphology and Medical ImagingUniversity Hospital LeuvenLeuvenBelgium

Personalised recommendations