Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-l-tyrosine PET in comparison to MRI

  • Norbert Galldiks
  • Marion Rapp
  • Gabriele Stoffels
  • Gereon R. Fink
  • Nadim J. Shah
  • Heinz H. Coenen
  • Michael Sabel
  • Karl-Josef Langen
Original Article



To investigate prospectively the potential of O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) PET in comparison to MRI for the assessment of the response of patients with recurrent high-grade glioma (rHGG) to antiangiogenic treatment.


Ten patients with rHGG were treated biweekly with bevacizumab/irinotecan (BEV/IR). MR images and dynamic 18F-FET PET scans were obtained at baseline and at follow-up after the start of treatment (median 4.9 weeks). Using MRI treatment response was evaluated according to RANO (Response Assessment in Neuro-Oncology) criteria. For 18F-FET PET evaluation, a reduction >45 % of the metabolically active tumour volume was considered as a treatment response, with the metabolically active tumour being defined as a tumour-to-brain ratio (TBR) of ≥1.6. The results of the treatment assessments were related to progression-free survival (PFS) and overall survival (OS). For further evaluation of PET data, maximum and mean TBR were calculated using region-of-interest analysis at baseline and at follow-up. Additionally, 18F-FET uptake kinetic studies were performed at baseline and at follow-up in all patients. Time–activity curves were generated and the times to peak (TTP) uptake (in minutes from the beginning of the dynamic acquisition to the maximum uptake) were calculated.


At follow-up, MRI showed a complete response according to RANO criteria in one of the ten patients (10 %), a partial response in five patients (50 %), and stable disease in four patients (40 %). Thus, MRI did not detect tumour progression. In contrast, 18F-FET PET revealed six metabolic responders (60 %) and four nonresponders (40 %). In the univariate survival analyses, a response detected by 18F-FET PET predicted a significantly longer PFS (median PFS, 9 vs. 3 months; P = 0.001) and OS (median OS 23.0 months vs. 3.5 months; P = 0.001). Furthermore, in four patients (40 %), diagnosis according to RANO criteria and by 18F-FET PET was discordant. In these patients, PET was able to detect tumour progression earlier than MRI (median time benefit 10.5 weeks; range 6–12 weeks). At baseline and at follow-up, in nonresponders TTP was significantly shorter than in responders (baseline TTP 10 ± 8 min vs. 35 ± 9 min; P = 0.002; follow-up TTP 23 ± 9 min vs. 39 ± 8 min; P = 0.02). Additionally, at baseline a kinetic pattern characterized by an early peak of 18F-FET uptake followed by a constant descent was more frequently observed in the nonresponders (P = 0.018).


Both standard and kinetic imaging parameters derived from18F-FET PET seem to predict BEV/IR treatment failure and thus contribute important additional information for clinical management over and above the information obtained by MRI response assessment based on RANO criteria.


Kinetic analysis RANO criteria Anti-VEGF treatment Amino acid PET Metabolic response 



The authors wish to thank Suzanne Schaden, Elisabeth Theelen and Kornelia Frey for assistance in the patient studies and Dr. Johannes Ermert, Silke Grafmüller, Erika Wabbals and Sascha Rehbein for radiosynthesis of 18F-FET. The Brain Imaging Center West (BICW) supported this work.


  1. 1.
    Vredenburgh JJ, Desjardins A, Herndon 2nd JE, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Macdonald DR, Cascino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.PubMedGoogle Scholar
  3. 3.
    Wick W, Wick A, Weiler M, Weller M. Patterns of progression in malignant glioma following anti-VEGF therapy: perceptions and evidence. Curr Neurol Neurosci Rep. 2011;11:305–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28:1963–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Pope WB, Young JR, Ellingson BM. Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep. 2011;11:336–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Piroth MD, Pinkawa M, Holy R, Klotz J, Nussen S, Stoffels G, et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;80:176–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging. 2006;33:516–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Pöpperl G, Goldbrunner R, Gildehaus FJ, Kreth FW, Tanner P, Holtmannspotter M, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging. 2005;32:1018–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Pöpperl G, Götz C, Rachinger W, Schnell O, Gildehaus FJ, Tonn JC, et al. Serial O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging. 2006;33:792–800.PubMedCrossRefGoogle Scholar
  11. 11.
    Galldiks N, Kracht LW, Burghaus L, Ullrich RT, Backes H, Brunn A, et al. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging. 2010;9:40–6.PubMedGoogle Scholar
  12. 12.
    Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW, et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med. 2012;53:1–10. doi: 10.2967/jnumed.111.098590.CrossRefGoogle Scholar
  13. 13.
    Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med. 2011;52:856–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K, et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging. 2005;32:422–9. doi: 10.1007/s00259-004-1705-8.PubMedCrossRefGoogle Scholar
  15. 15.
    Pöpperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med. 2006;47:393–403.PubMedGoogle Scholar
  16. 16.
    Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–42. doi: 10.1007/s00259-007-0534-y.PubMedCrossRefGoogle Scholar
  17. 17.
    Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J, et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol. 2011;13:307–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A, et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med. 2011;36:841–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolff JE, Driever PH, Erdlenbruch B, Kortmann RD, Rutkowski S, Pietsch T, et al. Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer. 2010;116:705–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet. 1995;345:1008–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Wick A, Pascher C, Wick W, Jauch T, Weller M, Bogdahn U, et al. Rechallenge with temozolomide in patients with recurrent gliomas. J Neurol. 2009;256:734–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Wick W, Steinbach JP, Kuker WM, Dichgans J, Bamberg M, Weller M. One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma. Neurology. 2004;62:2113–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Stummer W, Beck T, Beyer W, Mehrkens JH, Obermeier A, Etminan N, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neurooncol. 2008;87:103–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot. 2002;57:853–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Vollmar S, Hampl J, Kracht L, Herholz K. Integration of functional data (PET) into brain surgery planning and neuronavigation. In: Buzug TM, Holz D, Bongartz J, Kohl-Bareis M, Hartmann U, Weber S, editors. Advances in Medical Engineering. Springer Proceedings in Physics, vol 114. Berlin: Springer; 2007. p. 98–103.Google Scholar
  27. 27.
    Galldiks N, Ullrich R, Schroeter M, Fink GR, Jacobs AH, Kracht LW. Volumetry of [(11)C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging. 2010;37:84–92. doi: 10.1007/s00259-009-1219-5.PubMedCrossRefGoogle Scholar
  28. 28.
    Gupta K, Radotra BD, Banerjee AK, Nijhawan R. Quantitation of angiogenesis and its correlation with vascular endothelial growth factor expression in astrocytic tumors. Anal Quant Cytol Histol. 2004;26:223–9.PubMedGoogle Scholar
  29. 29.
    Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, et al. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab. 1998;18:500–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40:1367–73.PubMedGoogle Scholar
  31. 31.
    Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Sorensen AG, Emblem KE, Polaskova P, Jennings D, Kim H, Ancukiewicz M, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 2012;72:402–7. doi: 10.1158/0008-5472.CAN-11-2464.PubMedCrossRefGoogle Scholar
  34. 34.
    Floeth FW, Sabel M, Ewelt C, Stummer W, Felsberg J, Reifenberger G, et al. Comparison of (18)F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur J Nucl Med Mol Imag. 2011;38:731–41.CrossRefGoogle Scholar
  35. 35.
    von Baumgarten L, Brucker D, Tirniceru A, Kienast Y, Grau S, Burgold S, et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin Cancer Res. 2011;17:6192–205.CrossRefGoogle Scholar
  36. 36.
    Huang Y, Snuderl M, Jain RK. Polarization of tumor-associated macrophages: a novel strategy for vascular normalization and antitumor immunity. Cancer Cell. 2011;19:1–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Norbert Galldiks
    • 1
    • 2
  • Marion Rapp
    • 3
  • Gabriele Stoffels
    • 1
    • 4
  • Gereon R. Fink
    • 1
    • 2
  • Nadim J. Shah
    • 1
    • 4
  • Heinz H. Coenen
    • 1
    • 4
  • Michael Sabel
    • 3
  • Karl-Josef Langen
    • 1
    • 4
  1. 1.Institute of Neuroscience and Medicine (INM-3,-4,-5), Forschungszentrum JülichJülichGermany
  2. 2.Department of NeurologyUniversity of CologneCologneGermany
  3. 3.Department of NeurosurgeryUniversity of DüsseldorfDüsseldorfGermany
  4. 4.Jülich-Aachen Research Alliance (JARA) – Section JARA-BrainAachenGermany

Personalised recommendations