Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis

  • Sugama Chicklore
  • Vicky Goh
  • Musib Siddique
  • Arunabha Roy
  • Paul K. Marsden
  • Gary J. R. Cook
Review Article


18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is now routinely used in oncological imaging for diagnosis and staging and increasingly to determine early response to treatment, often employing semiquantitative measures of lesion activity such as the standardized uptake value (SUV). However, the ability to predict the behaviour of a tumour in terms of future therapy response or prognosis using SUVs from a baseline scan prior to treatment is limited. It is recognized that medical images contain more useful information than may be perceived with the naked eye, leading to the field of “radiomics” whereby additional features can be extracted by computational postprocessing techniques. In recent years, evidence has slowly accumulated showing that parameters obtained by texture analysis of radiological images, reflecting the underlying spatial variation and heterogeneity of voxel intensities within a tumour, may yield additional predictive and prognostic information. It is hoped that measurement of these textural features may allow better tissue characterization as well as better stratification of treatment in clinical trials, or individualization of future cancer treatment in the clinic, than is possible with current imaging biomarkers. In this review we focus on the literature describing the emerging methods of texture analysis in 18FDG PET/CT, as well as other imaging modalities, and how the measurement of spatial variation of voxel grey-scale intensity within an image may provide additional predictive and prognostic information, and postulate the underlying biological mechanisms.


18FDG PET/CT Texture analysis Radiomics Heterogeneity 


  1. 1.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Hillner BE, Siegel BA, Liu D, Shields AF, Gareen IF, Hanna L, et al. Impact of positron emission tomography/computed tomography and positron emission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J Clin Oncol. 2007;26:2155–61.CrossRefGoogle Scholar
  3. 3.
    Juweid ME, Cheson BD. Positron emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354:496–507.PubMedCrossRefGoogle Scholar
  4. 4.
    Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2009;50:88–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50:122S–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Cremerius U, Effert PJ, Adam G, Sabri O, Zimmy M, Wagenknecht G, et al. FDG PET for detection and therapy control of metastatic germ cell tumor. J Nucl Med. 1998;39:815–22.PubMedGoogle Scholar
  7. 7.
    Dehdashti F, Mortimer JE, Trinkaus K, Naughton MJ, Ellis M, Katzenellenbogen JA, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat. 2009;113:509–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Mac Manus MP, Ding Z, Hogg A, Herschtal A, Binns D, Ball DL, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80:1365–71.PubMedCrossRefGoogle Scholar
  9. 9.
    de Geus-Oei LF, van der Heijden HF, Visser EP, Hermsen R, van Hoorn BA, Timmer-Bonte JN, et al. Chemotherapy response evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J Nucl Med. 2007;48:1592–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Rizk NP, Tang L, Adusumilli PS, Bains MS, Akhurst TJ, Ilson D, et al. Predictive value of initial PET SUVmax in patients with locally advanced esophageal and gastroesophageal junction adenocarcinoma. J Thorac Oncol. 2009;4:875–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohno Y, Koyama H, Yoshikawa T, Matsumoto K, Aoyama N, Onishi Y, et al. Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy. AJR Am J Roentgenol. 2012;198:75–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang HQ, Yu JM, Meng X, Yue JB, Feng R, Ma L. Prognostic value of serial [18F]fluorodeoxyglucose PET-CT uptake in stage III patients with non-small cell lung cancer treated by concurrent chemoradiotherapy. Eur J Radiol. 2011;77:92–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Borst GR, Belderbos JS, Boellaard R, Comans EF, De Jaeger K, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41:1533–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee KH, Lee SH, Kim DW, Kang WJ, Chung JK, Im SA, et al. High fluorodeoxyglucose uptake on positron emission tomography in patients with advanced non-small cell lung cancer on platinum-based combination chemotherapy. Clin Cancer Res. 2006;12:4232–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangère T, Steinling M, et al. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:494–504.PubMedCrossRefGoogle Scholar
  16. 16.
    Colavolpe C, Metellus P, Mancini J, Barrie M, Béquet-Boucard C, Figarella-Branger D, et al. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J Neurooncol. 2012;107:527–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Xie P, Li M, Zhao H, Sun X, Fu Z, Yu J. 18F-FDG PET or PET-CT to evaluate prognosis for head and neck cancer: a meta-analysis. J Cancer Res Clin Oncol. 2011;137:1085–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, et al. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging. 2003;30:63–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Kidd EA, Dehdashti F, Siegel BA, Grigsby PW. Anal cancer maximum F-18 fluorodeoxyglucose uptake on positron emission tomography is correlated with prognosis. Radiother Oncol. 2010;95:288–91.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu W, Xing L, Yue J, Sun X, Sun X, Zhao H, et al. Prognostic significance of SUV on PET/CT in patients with localised oesophagogastric junction cancer receiving neoadjuvant chemotherapy/chemoradiation: a systematic review and meta-analysis. Br J Radiol. 2012;85:e694–701.PubMedCrossRefGoogle Scholar
  21. 21.
    Henriksson E, Kjellen E, Wahlberg P, Ohlsson T, Wennerberg J, Brun E. 2-Deoxy-2-[18F]fluoro-D-glucose uptake and correlation to intratumoral heterogeneity. Anticancer Res. 2007;27:2155–9.PubMedGoogle Scholar
  22. 22.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R, et al. Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys. 2009;75:618–25.PubMedCrossRefGoogle Scholar
  24. 24.
    2Yu H, Caldwell C, Mah K, Mozeg D. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging. 2009;28:374–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Tixier F, Cheze Le Rest C, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.PubMedCrossRefGoogle Scholar
  27. 27.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004;59:1061–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55:1822–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Ganeshan B, Miles KA, Young RC, Chatwin CR. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin Radiol. 2007;62:761–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Brown RA, Frayne R. A comparison of texture quantification techniques based on the Fourier and S transforms. Med Phys. 2008;35:4998–5008.PubMedCrossRefGoogle Scholar
  33. 33.
    Goh V, Sanghera B, Wellsted DM, Sundin J, Halligan S. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol. 2009;19:1358–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Sanghera B, Banerjee D, Khan A, Simcock I, Stirling JJ, Glynne Jones R, et al. Reproducibility of 2D and 3D fractal analysis techniques for the assessment of spatial heterogeneity of regional blood flow in rectal cancer. Radiology. 2012;263:865–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Craciunescu OI, Das SK, Clegg ST. Dynamic contrast-enhanced MRI and fractal characteristics of percolation clusters in two-dimensional tumor blood perfusion. J Biomech Eng. 1999;121:480–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med. 2007;37:486–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Al-Kadi OS. Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images. Comput Med Imaging Graph. 2010;34:494–503.PubMedCrossRefGoogle Scholar
  38. 38.
    Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19:1264–74.CrossRefGoogle Scholar
  39. 39.
    Veenland JF, Grashuis JL, Gelsema ES. Texture analysis in radiographs: the influence of modulation transfer function and noise on the discriminative ability of texture features. Med Phys. 1998;25:922–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.PubMedCrossRefGoogle Scholar
  42. 42.
    Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med. 1999;26:22–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Z, Gierriero A, Sario M. Comparison of several approaches for segmentation of texture images. Patt Recog Lett. 1996;17:509–21.CrossRefGoogle Scholar
  44. 44.
    Sharma N, Ray AK, Sharma S, Shukla KK, Pradhan S, Aggarwal LMJ. Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network. Med Phys. 2008;33:119–26.CrossRefGoogle Scholar
  45. 45.
    Ganeshan B, Goh V, Mandeville H, Ng QS, Hoskin P, Miles KA. CT of non-small cell lung cancer: Histopathological correlates for texture parameters. Radiology. 2012 (in press).Google Scholar
  46. 46.
    Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;26:165–71.CrossRefGoogle Scholar
  47. 47.
    Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012;67:157–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol. 2012;22:796–802.PubMedCrossRefGoogle Scholar
  49. 49.
    Kido S, Kuriyama K, Higashiyama M, Kasugai T, Kuroda C. Fractal analysis of internal and peripheral textures of small peripheral bronchogenic carcinomas in thin-section computed tomography: comparison of bronchioloalveolar cell carcinomas with non bronchioloalveolar cell carcinomas. J Comput Assist Tomogr. 2003;27:56–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen W, Giger ML, Li H, Bick U, Newstead GM. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance image. Magn Reson Med. 2007;58:562–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Woods BJ, Clymer BD, Kurc T, Heverhagen JT, Stevens R, Orsdemir A, et al. Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J Magn Reson Imaging. 2007;25:495–501.PubMedCrossRefGoogle Scholar
  52. 52.
    Holli K, Lääperi AL, Harrison L, Luukkaala T, Toivonen T, Ryymin P, et al. Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad Radiol. 2010;17:135–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Eliat PA, Olivié D, Saïkali S, Carsin B, Saint-Jalmes H, de Certaines JD. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int. 2012;2012:1951–76.Google Scholar
  54. 54.
    Mayerhoefer ME, Schima W, Trattnig S, Pinker K, Berger-Kulemann V, Ba-Ssalamah A. Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas. J Magn Reson Imaging. 2010;32:352–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, et al. Prostate cancer characterization on MR images using fractal features. Med Phys. 2011;38:83–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Harrison LC, Luukkaala T, Pertovaara H, Saarinen TO, Heinonen TT, Jarvenpaa R, et al. Non-Hodgkin lymphoma response evaluation with MRI texture classification. J Exp Clin Cancer Res. 2009;28:87.PubMedCrossRefGoogle Scholar
  57. 57.
    Alic L, van Vliet M, van Dijke CF, Eggermont AM, Veenland JF, Niessen WJ. Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response? Phys Med Biol. 2011;56:1601–16.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Connor JP, Rose CJ, Jackson A, Watson Y, Cheung S, Maders F, et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer. 2011;105:139–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010;10:137–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by non-invasive imaging. Nat Biotechnol. 2007;25:675–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sugama Chicklore
    • 1
  • Vicky Goh
    • 1
  • Musib Siddique
    • 1
  • Arunabha Roy
    • 1
  • Paul K. Marsden
    • 1
  • Gary J. R. Cook
    • 1
  1. 1.Clinical PET Centre, Division of Imaging Sciences and Biomedical EngineeringKings College London, St Thomas’ HospitalLondonUK

Personalised recommendations