Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer

  • Linda Heijmen
  • Lioe-Fee de Geus-Oei
  • Johannes H. W. de Wilt
  • Dimitris Visvikis
  • Mathieu Hatt
  • Eric P. Visser
  • Johan Bussink
  • Cornelis J. A. Punt
  • Wim J. G. Oyen
  • Hanneke W. M. van Laarhoven
Original Article



Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before 18F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of 18F-FDG PET in colorectal liver metastases.


Twenty patients scheduled for liver metastasectomy underwent two 18F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUVmax, SUVmean, volume and TLG. Tumours were delineated using an adaptive threshold method (PETSBR) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method.


Coefficient of repeatability of SUVmax and SUVmean were ∼39 and ∼31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PETSBR, from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUVmean. Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with 18F-FDG PET parameters.


In conclusion, repeatability of SUVmean and SUVmax was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when 18F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively use PET for early response monitoring.


Colorectal metastases Reproducibility 18F-FDG PET Histopathology 



Supported by a grant from the Dutch Cancer Society (KWF Kankerbestrijding), no. KUN 2008–4098.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009;360:563–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Desar IM, van Herpen CM, van Laarhoven HW, Barentsz JO, Oyen WJ, van der Graaf WT, et al. Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 2009;35:309–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 2008;35:2294–303.PubMedCrossRefGoogle Scholar
  6. 6.
    de Geus-Oei LF, Wiering B, Krabbe PF, Ruers TJ, Punt CJ, Oyen WJ. FDG-PET for prediction of survival of patients with metastatic colorectal carcinoma. Ann Oncol 2006;17:1650–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, et al. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003;97:1015–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Warburg O. On the origin of cancer cells. Science 1956;123:309–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 2009;107:1053–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202:654–62.PubMedCrossRefGoogle Scholar
  11. 11.
    de Geus-Oei LF, Vriens D, van Laarhoven HW, Van Der Graaf WT, Oyen WJ. Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 2009;50 Suppl 1:43S–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 2010;51:1368–76. doi: 10.2967/jnumed.110.078501.PubMedCrossRefGoogle Scholar
  13. 13.
    Nahmias C, Wahl LM. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med 2008;49:1804–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber WA, Ziegler SI, Thödtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–7.PubMedGoogle Scholar
  15. 15.
    Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, et al. Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 2009;50:1646–54. doi: 10.2967/jnumed.109.063347.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP. Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 2005;46:424–8.PubMedGoogle Scholar
  17. 17.
    Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging 2008;35:2320–33. doi: 10.1007/s00259-008-0874-2.PubMedCrossRefGoogle Scholar
  18. 18.
    Lodge MA, Chaudhry MA, Wahl RL. Noise considerations for PET quantification using maximum and peak standardized uptake value. J Nucl Med 2012;53:1041–7. doi: 10.2967/jnumed.111.101733.PubMedCrossRefGoogle Scholar
  19. 19.
    Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181–200.PubMedCrossRefGoogle Scholar
  20. 20.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50 Suppl 1:122S–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28:881–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 2010;77:301–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Rademakers SE, Rijken PF, Peeters WJ, Nijkamp MM, Barber PR, van der Laak J, et al. Parametric mapping of immunohistochemically stained tissue sections; a method to quantify the colocalization of tumor markers. Cell Oncol (Dordr) 2011;34:119–29.Google Scholar
  24. 24.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Dewitte K, Fierens C, Stöckl D, Thienpont LM. Application of the Bland-Altman plot for interpretation of method-comparison studies: a critical investigation of its practice. Clin Chem 2002;48:799–801.PubMedGoogle Scholar
  26. 26.
    van Laarhoven HW, Rijpkema M, Punt CJ, Ruers TJ, Hendriks JC, Barentsz JO, et al. Method for quantitation of dynamic MRI contrast agent uptake in colorectal liver metastases. J Magn Reson Imaging 2003;18:315–20.PubMedCrossRefGoogle Scholar
  27. 27.
    de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med 2012;53:701–8. doi: 10.2967/jnumed.111.095299.PubMedCrossRefGoogle Scholar
  28. 28.
    Frings V, de Langen AJ, Smit EF, van Velden FH, Hoekstra OS, van Tinteren H, et al. Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med 2010;51:1870–7. doi: 10.2967/jnumed.110.077255.PubMedCrossRefGoogle Scholar
  29. 29.
    Bos R, van der Hoeven JJ, van der Wall E, van der Groep P, van Diest PJ, Comans EF, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20:379–87.PubMedCrossRefGoogle Scholar
  30. 30.
    Vordermark D, Kaffer A, Riedl S, Katzer A, Flentje M. Characterization of carbonic anhydrase IX (CA IX) as an endogenous marker of chronic hypoxia in live human tumor cells. Int J Radiat Oncol Biol Phys 2005;61:1197–207.PubMedCrossRefGoogle Scholar
  31. 31.
    Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JH. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 2011;11:167.PubMedCrossRefGoogle Scholar
  32. 32.
    Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J. Molecular aspects of tumour hypoxia. Mol Oncol 2008;2:41–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 1979;52:650–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Burgman P, Odonoghue JA, Humm JL, Ling CC. Hypoxia-induced increase in FDG uptake in MCF7 cells. J Nucl Med 2001;42:170–5.PubMedGoogle Scholar
  35. 35.
    Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 1995;36:1625–32.PubMedGoogle Scholar
  36. 36.
    Minn H, Clavo AC, Wahl RL. Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol 1996;23:941–6.PubMedCrossRefGoogle Scholar
  37. 37.
    van Laarhoven HW, de Geus-Oei LF, Wiering B, Lok J, Rijpkema M, Kaanders JH, et al. Gadopentetate dimeglumine and FDG uptake in liver metastases of colorectal carcinoma as determined with MR imaging and PET. Radiology 2005;237:181–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Bender H, Bangard N, Metten N, Bangard M, Mezger J, Schomburg A, et al. Possible role of FDG-PET in the early prediction of therapy outcome in liver metastases of colorectal cancer. Hybridoma 1999;18:87–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Linda Heijmen
    • 1
  • Lioe-Fee de Geus-Oei
    • 2
  • Johannes H. W. de Wilt
    • 3
  • Dimitris Visvikis
    • 5
  • Mathieu Hatt
    • 5
  • Eric P. Visser
    • 2
  • Johan Bussink
    • 4
  • Cornelis J. A. Punt
    • 6
  • Wim J. G. Oyen
    • 2
  • Hanneke W. M. van Laarhoven
    • 1
    • 6
  1. 1.Department of Medical Oncology 452Radboud University Medical CentreNijmegenThe Netherlands
  2. 2.Department of Nuclear MedicineRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.Department of SurgeryRadboud University Medical CentreNijmegenThe Netherlands
  4. 4.Department of Radiation OncologyRadboud University Medical CentreNijmegenThe Netherlands
  5. 5.INSERM U1101LaTIMBrestFrance
  6. 6.Department of Medical Oncology, Academic Medical CentreUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations