Enhanced efficacy of combined 213Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest

  • Mario Vallon
  • Christof SeidlEmail author
  • Birgit Blechert
  • Zhoulei Li
  • Klaus-Peter Gilbertz
  • Anja Baumgart
  • Michaela Aichler
  • Annette Feuchtinger
  • Florian C. Gaertner
  • Frank Bruchertseifer
  • Alfred Morgenstern
  • Axel K. Walch
  • Reingard Senekowitsch-Schmidtke
  • Markus Essler
Original Article



Targeted therapy with α-particle emitting radionuclides is a promising new option in cancer therapy. Stable conjugates of the vascular tumour-homing peptide F3 with the α-emitter 213Bi specifically target tumour cells. The aim of our study was to determine efficacy of combined 213Bi-diethylenetriaminepentaacetic acid (DTPA)-F3 and paclitaxel treatment compared to treatment with either 213Bi-DTPA-F3 or paclitaxel both in vitro and in vivo.


Cytotoxicity of treatment with 213Bi-DTPA-F3 and paclitaxel, alone or in combination, was assayed towards OVCAR-3 cells using the alamarBlue assay, the clonogenic assay and flow cytometric analyses of the mode of cell death and cell cycle arrest. Therapeutic efficacy of the different treatment options was assayed after repeated treatment of mice bearing intraperitoneal OVCAR-3 xenograft tumours. Therapy monitoring was performed by bioluminescence imaging and histopathologic analysis.


Treatment of OVCAR-3 cells in vitro with combined 213Bi-DTPA-F3 and paclitaxel resulted in enhanced cytotoxicity, induction of apoptosis and G2/M phase arrest compared to treatment with either 213Bi-DTPA-F3 or paclitaxel. Accordingly, i.p. xenograft OVCAR-3 tumours showed the best response following repeated (six times) combined therapy with 213Bi-DTPA-F3 (1.85 MBq) and paclitaxel (120 μg) as demonstrated by bioluminescence imaging and histopathologic investigation of tumour spread on the mesentery of the small and large intestine. Moreover, mean survival of xenograft mice that received combined therapy with 213Bi-DTPA-F3 and paclitaxel was significantly superior to mice treated with either 213Bi-DTPA-F3 or paclitaxel alone.


Combined treatment with 213Bi-DTPA-F3 and paclitaxel significantly increased mean survival of mice with peritoneal carcinomatosis of ovarian origin, thus favouring future therapeutic application.


Targeted radionuclide therapy Tumour-homing peptide F3 Peritoneal carcinomatosis α-Emitter 213Bi Anticancer drug paclitaxel 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB 824).


  1. 1.
    Levy AD, Shaw JC, Sobin LH. Secondary tumors and tumorlike lesions of the peritoneal cavity: imaging features with pathologic correlation. Radiographics 2009;29:347–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Gunn AJ, Brechbiel MW, Choyke PL. The emerging role of molecular imaging and targeted therapeutics in peritoneal carcinomatosis. Expert Opin Drug Deliv 2007;4:389–402.PubMedCrossRefGoogle Scholar
  3. 3.
    Los G, van Vugt MJ, Pinedo HM. Response of peritoneal solid tumours after intraperitoneal chemohyperthermia treatment with cisplatin or carboplatin. Br J Cancer 1994;69:235–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Elias D, Blot F, El Otmany A, Antoun S, Lasser P, Boige V, et al. Curative treatment of peritoneal carcinomatosis arising from colorectal cancer by complete resection and intraperitoneal chemotherapy. Cancer 2001;92:71–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 2006;354:34–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Borchardt PE, Quadri SM, Freedman RS, Vriesendorp HM. Intraperitoneal radioimmunotherapy with human monoclonal IGM in nude mice with peritoneal carcinomatosis. Cancer Biother Radiopharm 2000;15:53–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Buchsbaum DJ, Khazaeli MB, Axworthy DB, Schultz J, Chaudhuri TR, Zinn KR, et al. Intraperitoneal pretarget radioimmunotherapy with CC49 fusion protein. Clin Cancer Res 2005;11:8180–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 2005;23:6763–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Koppe MJ, Hendriks T, Boerman OC, Oyen WJ, Bleichrodt RP. Radioimmunotherapy is an effective adjuvant treatment after cytoreductive surgery of experimental colonic peritoneal carcinomatosis. J Nucl Med 2006;47:1867–74.PubMedGoogle Scholar
  10. 10.
    Street HH, Goris ML, Fisher GA, Wessels BW, Cho C, Hernandez C, et al. Phase I study of 131I-chimeric(ch) TNT-1/B monoclonal antibody for the treatment of advanced colon cancer. Cancer Biother Radiopharm 2006;21:243–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Kinuya S, Yokoyama K, Fukuoka M, Hiramatsu T, Mori H, Shiba K, et al. Intraperitoneal radioimmunotherapy to treat the early phase of peritoneal dissemination of human colon cancer cells in a murine model. Nucl Med Commun 2007;28:129–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Oei AL, Verheijen RH, Seiden MV, Benigno BB, Lopes A, Soper JT, et al. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer 2007;120:2710–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Beck R, Seidl C, Pfost B, Morgenstern A, Bruchertseifer F, Baum H, et al. 213Bi-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci 2007;98:1215–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Seidl C, Senekowitsch-Schmidtke R. Treatment of diffuse-type gastric cancer cells using 213Bi-radioimmunoconjugates in vitro and in vivo following intraperitoneal dissemination. Curr Radiopharm 2008;1:215–24.CrossRefGoogle Scholar
  15. 15.
    Milenic DE, Garmestani K, Brady ED, Baidoo KE, Albert PS, Wong KJ, et al. Multimodality therapy: potentiation of high linear energy transfer radiation with paclitaxel for the treatment of disseminated peritoneal disease. Clin Cancer Res 2008;14:5108–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Milenic DE, Brady ED, Garmestani K, Albert PS, Abdulla A, Brechbiel MW. Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer 2010;116(4 Suppl):1059–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Palm S, Bäck T, Claesson I, Danielsson A, Elgqvist J, Frost S, et al. Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice. Int J Radiat Oncol Biol Phys 2007;69:572–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Elgqvist J, Andersson H, Jensen H, Kahu H, Lindegren S, Warnhammar E, et al. Repeated intraperitoneal alpha-radioimmunotherapy of ovarian cancer in mice. J Oncol 2010;2010:394913.PubMedCrossRefGoogle Scholar
  19. 19.
    Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab′)2–a phase I study. J Nucl Med 2009;50:1153–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E. Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 2003;163:871–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Morgenstern A, Bruchertseifer F, Apostolidis C. Targeted alpha therapy with 213Bi. Curr Radiopharm 2011;4:295–305.PubMedCrossRefGoogle Scholar
  22. 22.
    Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Müller JM, et al. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide 213Bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS One 2009;4:e5715.PubMedCrossRefGoogle Scholar
  23. 23.
    Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm 2011;4:306–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Essler M, Gärtner FC, Neff F, Blechert B, Senekowitsch-Schmidtke R, Bruchertseifer F, et al. Therapeutic efficacy and toxicity of (225)Ac-labelled vs. (213)Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging 2012;39:602–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Apostolidis C, Molinet R, Rasmussen G, Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal Chem 2005;77:6288–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Zielinska B, Apostolidis C, Bruchertseifer F, Morgenstern A. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy. Solvent Extr Ion Exch 2007;25:339–49.CrossRefGoogle Scholar
  27. 27.
    Gibson AE, Noel RJ, Herlihy JT, Ward WF. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am J Physiol 1989;257(2 Pt 1):C182–4.PubMedGoogle Scholar
  28. 28.
    Heneberg P. Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr Med Chem 2009;16:706–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Gilbertz KP, Van Beuningen D, Rhein AP. Early changes in cell cycle kinetics after ionizing irradiation below 1 GY. Int J Radiat Biol 1998;73:187–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Vallon M, Rohde F, Janssen KP, Essler M. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation. Exp Cell Res 2010;316:412–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Steren A, Sevin BU, Perras J, Angioli R, Nguyen H, Guerra L, et al. Taxol sensitizes human ovarian cancer cells to radiation. Gynecol Oncol 1993;48:252–8.PubMedCrossRefGoogle Scholar
  32. 32.
    DeNardo SJ, Kukis DL, Kroger LA, O’Donnell RT, Lamborn KR, Miers LA, et al. Synergy of Taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody: efficacy and toxicity in breast cancer xenografts. Proc Natl Acad Sci U S A 1997;94:4000–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Seidl C, Port M, Gilbertz KP, Morgenstern A, Bruchertseifer F, Schwaiger M, et al. 213Bi-induced death of HSC45-M2 gastric cancer cells is characterized by G2 arrest and up-regulation of genes known to prevent apoptosis but induce necrosis and mitotic catastrophe. Mol Cancer Ther 2007;6:2346–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. 212Pb-radioimmunotherapy induces G2 cell-cycle arrest and delays DNA damage repair in tumor xenografts in a model for disseminated intraperitoneal disease. Mol Cancer Ther 2012;11:639–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelly MP, Lee FT, Smyth FE, Brechbiel MW, Scott AM. Enhanced efficacy of 90Y-radiolabeled anti-Lewis Y humanized monoclonal antibody hu3S193 and paclitaxel combined-modality radioimmunotherapy in a breast cancer model. J Nucl Med 2006;47:716–25.PubMedGoogle Scholar
  36. 36.
    Kelly MP, Lee FT, Tahtis K, Smyth FE, Brechbiel MW, Scott AM. Radioimmunotherapy with alpha-particle emitting 213Bi-C-functionalized trans-cyclohexyl-diethylenetriaminepentaacetic acid-humanized 3S193 is enhanced by combination with paclitaxel chemotherapy. Clin Cancer Res 2007;13(18 Pt 2):5604s–12s.PubMedCrossRefGoogle Scholar
  37. 37.
    Kelly MP, Lee ST, Lee FT, Smyth FE, Davis ID, Brechbiel MW, et al. Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate 2009;69:92–104.PubMedCrossRefGoogle Scholar
  38. 38.
    Milenic DE, Garmestani K, Brady ED, Albert PS, Abdulla A, Flynn J, et al. Potentiation of high-LET radiation by gemcitabine: targeting HER2 with trastuzumab to treat disseminated peritoneal disease. Clin Cancer Res 2007;13:1926–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mario Vallon
    • 1
  • Christof Seidl
    • 1
    Email author
  • Birgit Blechert
    • 1
  • Zhoulei Li
    • 1
  • Klaus-Peter Gilbertz
    • 2
  • Anja Baumgart
    • 3
  • Michaela Aichler
    • 4
  • Annette Feuchtinger
    • 4
  • Florian C. Gaertner
    • 1
  • Frank Bruchertseifer
    • 5
  • Alfred Morgenstern
    • 5
  • Axel K. Walch
    • 4
  • Reingard Senekowitsch-Schmidtke
    • 1
  • Markus Essler
    • 1
  1. 1.Department of Nuclear MedicineTechnische Universität MünchenMunichGermany
  2. 2.Institute of RadiobiologyGerman Armed ForcesMunichGermany
  3. 3.III. Medical DepartmentTechnische Universität MünchenMunichGermany
  4. 4.Institute of PathologyHelmholtz Zentrum MünchenNeuherbergGermany
  5. 5.European Commission, Joint Research CentreInstitute for Transuranium ElementsKarlsruheGermany

Personalised recommendations