Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

  • Cristina LoisEmail author
  • Ilja Bezrukov
  • Holger Schmidt
  • Nina Schwenzer
  • Matthias K. Werner
  • Jürgen Kupferschläger
  • Thomas Beyer
Original Article



Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging.


We employed two MRCA: Lumirem® (oral) and Gadovist® (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and 18F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist® (IV) and a volunteer study employing two different oral MRCA (Lumirem® and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat–water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm.


IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps.


In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron oxide-based MRCA unless advanced AC algorithms are used.


PET/MR Quantification Contrast agents Attenuation correction 



We thank Mr. Gröper and Mr. Zeger (University of Tübingen, Germany) for performing the patient and volunteer scans and supporting the PET/MR phantom measurements. We also thank Julia Mannheim (University of Tübingen, Germany) for performing preliminary transmission scan measurements in a Siemens Inveon preclinical system (not discussed in the article). Finally, we thank L. Tellmann (FZ Jülich, Germany) for performing the transmission scan measurements and Brigitte Gückel (University of Tübingen, Germany) for managing the administration of the scientific study.

During the preparation of the manuscript C.L. and T.B. were supported in part by the Imaging Science Institute, a collaborative effort of Siemens Healthcare and the Department of Diagnostic and Interventional Radiology at the University of Tübingen.

Conflicts of interest

T.B. is founder and president of cmi-experts GmbH, but reports no conflicts of interest with the conduct of this study.


  1. 1.
    Pichler BJ, Kolb A, Nägele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Schulthess GK, Schlemmer H-PW. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S3–9.CrossRefGoogle Scholar
  3. 3.
    Ratib O, Beyer T. Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging. 2011;38:992–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.PubMedGoogle Scholar
  5. 5.
    Ratib O, Becker M, Vallee JP, Loubeyre P, Wissmeyer M, Willi J-P, et al. Whole body PET-MRI scanner: first experience in oncology [abstract]. J Nucl Med. 2010;51 Suppl 2:165.Google Scholar
  6. 6.
    Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.PubMedCrossRefGoogle Scholar
  7. 7.
    Delso G, Fürst S, Jakoby BJ, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.PubMedCrossRefGoogle Scholar
  8. 8.
    von Schulthess GK, Burger C. Integrating imaging modalities: what makes sense from a workflow perspective? Eur J Nucl Med Mol Imaging. 2010;37:980–90.CrossRefGoogle Scholar
  9. 9.
    Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S93–104.PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38(1):138–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52(9):1392–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med. 2003;33:166–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Bellin MF. MR contrast agents, the old and the new. Eur J Radiol. 2006;60:314–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Cohade C, Osman M, Nakamoto Y, Marshall LT, Links JM, Fishman EK, et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med. 2003;44(3):412–6.PubMedGoogle Scholar
  16. 16.
    Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jentzen W, Debatin JF, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med. 2002;43:1339–42.PubMedGoogle Scholar
  17. 17.
    Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual modality 18F-FDG PET/CT. J Nucl Med. 2004;45 Suppl:56S–65S.PubMedGoogle Scholar
  18. 18.
    Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Hahn PF, Stark DD, Lewis JM, Saini S, Elizondo G, Weissleder R, et al. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology. 1990;175(3):695–700.PubMedGoogle Scholar
  20. 20.
    Leung K. Ferumoxil. Molecular imaging and contrast agent database. Bethesda: National Center for Biotechnology Information; 2004-2010.
  21. 21.
    Tombach B, Heindel W. Value of 1.0- M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol. 2002;12(6):1550–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Huppertz A, Rohrer M. Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imaging. Eur Radiol. 2004;14:M12–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng KT. Gadobutrol. Molecular imaging and contrast agent database. Bethesda: National Center for Biotechnology Information; 2004-2010.
  24. 24.
    Dooley M, Jarvis B. Iomeprol. A review of its use as a contrast medium. Drugs. 2000;59(5):1169–86.PubMedCrossRefGoogle Scholar
  25. 25.
    Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr. 1994;18(1):110–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Stark H, Woods J, Paul I, Hingorani R. Direct Fourier reconstruction in computer tomography. IEEE Trans Acoust Speech Signal Process. 1981;29:237–45.CrossRefGoogle Scholar
  27. 27.
    Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the national electrical manufacturers association NU 2-2001 standard. J Nucl Med. 2005;46:2083–91.PubMedGoogle Scholar
  28. 28.
    National Electrical Manufacturers Association (NEMA). Standards publication NU 2-1994: performance measurements of positron emission tomographs. Washington, DC: NEMA; 1994.Google Scholar
  29. 29.
    National Electrical Manufacturers Association (NEMA). Standards publication NU 2-2007: performance measurements of positron emission tomographs. Rosslyn: NEMA; 2007.Google Scholar
  30. 30.
    Tropp J. Image brightening in samples of high dielectric constant. J Magn Reson. 2004;167:12–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Bai C, Shao L, Da Silva AJ, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci. 2003;50(5):1510–5.CrossRefGoogle Scholar
  32. 32.
    Riordan RD, Khonsari M, Jeffries J, Maskell GF, Cook PG. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol. 2004;77:991–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Arrivé L, Coudray C, Azizi L, Lewin M, Hoeffel C, Monnier-Cholley L, et al. Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography. J Radiol. 2007;88:1689–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Mawlawi O, Erasmus JJ, Munden RF, Pan T, Knight AE, Macapinlac HA, et al. Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. AJR Am J Roentgenol. 2006;186:308–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Yau YY, Chan WS, Tam YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med. 2005;46:283–91.PubMedGoogle Scholar
  36. 36.
    Lee W, Park J, Kim KM, Ko I, Lim I, Kim JS, et al. Effects of MR contrast agents on PET quantitation in PET-MRI study [abstract]. J Nucl Med. 2011;52 Suppl 1:53.Google Scholar
  37. 37.
    Kramer H, Michaely HJ, Requardt M, Rohrer M, Reeder S, Reiser MF, et al. Effects of injection rate and dose on image quality in time-resolved magnetic resonance angiography (MRA) by using 1.0M contrast agents. Eur Radiol. 2007;17:1394–402.PubMedCrossRefGoogle Scholar
  38. 38.
    Fritz-Hansen T, Rostrup E, Larsson HB, Søndergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996;36:225–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Robert P, Violas X, Santus R, Le Bihan D, Corot C. Optimization of a blood pool contrast agent injection protocol for MR angiography. J Magn Reson Imaging. 2005;21:611–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Samarin A, Burger C, Kuhn FP, Schmid DT, von Schulthess GK. The influence of bone attenuation on tracer uptake values of bone lesions of different composition in PET imaging. Eur J Nucl Med Mol Imaging. 2009;38 Suppl 2:S156.Google Scholar
  41. 41.
    Lim JS, Kim MJ, Myoung S, Park MS, Choi JY, Choi JS, et al. MR cholangiography for evaluation of hilar branching anatomy in transplantation of the right hepatic lobe from a living donor. AJR Am J Roentgenol. 2008;191(2):537–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Cristina Lois
    • 1
    • 2
    • 3
    Email author
  • Ilja Bezrukov
    • 4
    • 5
  • Holger Schmidt
    • 4
    • 6
  • Nina Schwenzer
    • 6
  • Matthias K. Werner
    • 6
  • Jürgen Kupferschläger
    • 7
  • Thomas Beyer
    • 3
    • 8
  1. 1.Department of Particle PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Health Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
  3. 3.Imaging Science InstituteTübingenGermany
  4. 4.Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and RadiopharmacyEberhard Karls UniversityTübingenGermany
  5. 5.Department of Empirical InferenceMax Plank Institute for Intelligent SystemsTübingenGermany
  6. 6.Diagnostic and Interventional Radiology, Department of RadiologyEberhard Karls UniversityTübingenGermany
  7. 7.Nuclear Medicine, Department of RadiologyEberhard Karls UniversityTübingenGermany
  8. 8.cmi-experts GmbHZürichSwitzerland

Personalised recommendations