Use of pretreatment metabolic tumour volumes to predict the outcome of pharyngeal cancer treated by definitive radiotherapy

  • Chia-Hung Kao
  • Shih-Chieh Lin
  • Te-Chun Hsieh
  • Kuo-Yang Yen
  • Shih-Neng Yang
  • Yao-Ching Wang
  • Ji-An Liang
  • Chun-Hung Hua
  • Shang-Wen Chen
Original Article



The aim of the study was to investigate the predictive role of pretreatment metabolic volume (MTV) in pharyngeal cancer (PC) patients treated with definitive (chemo) radiotherapy.


This retrospective analysis enrolled 64 patients with PC treated with (chemo) radiotherapy. All patients received pretreatment fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT. Four PET segmentation methods were used, namely applying an isocontour at a standardized uptake value (SUV) of either 2.5 or 3.0 (MTV2.5 and MTV3.0) or using fixed thresholds of either 40 or 50 % (MTV40 %, MTV50 %) of the maximum intratumoural FDG activity. Disease-free survival (DFS) and primary relapse-free survival (PRFS) were examined according to cutoffs of the median values for each MTV and the gross tumour volume (GTVp). Independent prognosticators were identified by Cox regression analysis.


With a median follow-up of 24 months, 19 patients died, and 26 patients experienced tumour relapse at primary sites. Multivariate analysis of the DFS showed that MTV2.5 > 13.6 ml was the only predictor of relapse [p = 0.011, hazard ratio = 2.69, 95 % confidence interval (CI) 1.25–5.76]. The independent predictor for PRFS was MTV2.5 > 13.6 ml (p = 0.003, hazard ratio = 3.76, 95 % CI 1.57–8.92), whereas GTVp > 15.5 ml had a marginal impact on PRFS (p = 0.06, hazard ratio = 3.54, 95 % CI 0.97–11.85). Patients having tumours with MTV2.5 > 13.6 ml had a significantly inferior 2-year PRFS compared with patients who had lower MTV2.5 tumours (39 vs 72 %, respectively, p = 0.001).


For PC patients treated with definitive (chemo)radiotherapy, pretreatment MTV2.5 volume achieved the best predictive value for primary recurrence, and the same value was also a prognosticator for DFS.


FDG PET/CT Pharyngeal carcinoma Radiotherapy Metabolic tumour volume Prognostic factor 


  1. 1.
    Studer G, Lütolf UM, El-Bassiouni M, Rousson V, Glanzmann C. Volumetric staging (VS) is superior to TNM and AJCC staging in predicting outcome of head and neck cancer treated with IMRT. Acta Oncol 2007;46:386–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Mancuso AA, Mukherji SK, Schmalfuss I, Mendenhall W, Parsons J, Pameijer F, et al. Preradiotherapy computed tomography as a predictor of local control in supraglottic carcinoma. J Clin Oncol 1999;17:631–7.PubMedGoogle Scholar
  3. 3.
    Schinagl DAX, Span PN, Oyen WJ, Kaanders JHAM. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 2011;38:1449–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Allal AS, Slosman DO, Kebdani T, Allaoua M, Lehmann W, Dulguerov P. Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F]fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 2004;59:1295–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Brun E, Kjellén E, Tennvall J, Ohlsson T, Sandell A, Perfekt R, et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 2002;24:127–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 2002;86:512–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee SW, Nam SY, Im KC, Kim JS, Choi EK, Ahn SD, et al. Prediction of prognosis using standardized uptake value of 2-[(18)F]fluoro-2-deoxy-d-glucose positron emission tomography for nasopharyngeal carcinomas. Radiother Oncol 2008;87:211–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Machtay M, Natwa M, Andrel J, Hyslop T, Anne PR, Lavarino J, et al. Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer. Head Neck 2009;31:195–201.PubMedCrossRefGoogle Scholar
  9. 9.
    Minn H, Lapela M, Klemi PJ, Grénman R, Leskinen S, Lindholm P, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997;38:1907–11.PubMedGoogle Scholar
  10. 10.
    Roh JL, Pae KH, Choi SH, Kim JS, Lee S, Kim SB, et al. 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography as guidance for primary treatment in patients with advanced-stage resectable squamous cell carcinoma of the larynx and hypopharynx. Eur J Surg Oncol 2007;33:790–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Schwartz DL, Rajendran J, Yueh B, Coltrera MD, Leblanc M, Eary J, et al. FDG-PET prediction of head and neck squamous cell cancer outcomes. Arch Otolaryngol Head Neck Surg 2004;130:1361–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Chung MK, Jeong HS, Park SG, Jang JY, Son YL, Choi JY, et al. Metabolic tumor volume of [18F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. Clin Cancer Res 2009;15:5861–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol 2010;49:201–8.PubMedCrossRefGoogle Scholar
  14. 14.
    La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;74:1335–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol 2008;89:13–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki K, Nishioka T, Homma A, Tsuchiya K, Yasuda M, Aoyama H, et al. Value of fluorodeoxyglucose positron emission tomography before radiotherapy for head and neck cancer: does the standardized uptake value predict treatment outcome? Jpn J Radiol 2009;27:237–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation treatment outcome in head-and-neck cancer patients. Radiother Oncol 2006;80:151–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 2008;70:678–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Kao CH, Hsieh TC, Yu CY, Yen KY, Yang SN, Wang YC, et al. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck cancer: a correlation study between suitable uptake value threshold and tumor parameters. Radiat Oncol 2010;5:76.PubMedCrossRefGoogle Scholar
  20. 20.
    Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys 2004;60:1419–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning for oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 2002;53:1051–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen SW, Yang SN, Liang JA, Lin FJ, Tsai MH. Prognostic impact of tumor volume in patients with stage III-IVA hypopharyngeal cancer without bulky lymph nodes treated with definitive concurrent chemoradiotherapy. Head Neck 2009;31:709–16.PubMedCrossRefGoogle Scholar
  23. 23.
    Minn H, Clavo AC, Grénman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 1995;36:252–8.PubMedGoogle Scholar
  24. 24.
    Clavo AC, Brown RS, Wahl RL. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 1995;36:1625–32.PubMedGoogle Scholar
  25. 25.
    Furuta M, Hasegawa M, Hayakawa K, Yamakawa M, Ishikawa H, Nonaka T, et al. Rapid rise in FDG uptake in an irradiated human tumour xenograft. Eur J Nucl Med 1997;24:435–8.PubMedGoogle Scholar
  26. 26.
    Nair VS, Krupitskaya Y, Gould MK. Positron emission tomography 18F-fluorodeoxyglucose uptake and prognosis in patients with surgically treated, stage I non-small cell lung cancer: a systematic review. J Thorac Oncol 2009;4:1473–9.PubMedCrossRefGoogle Scholar
  27. 27.
    de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007;55:79–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 2004;45:1431–4.PubMedGoogle Scholar
  29. 29.
    Lee JR, Madsen MT, Bushnel D, Menda Y. A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun 2000;21:685–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee P, Weerasuriya D, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys 2007;69:328–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2011;38:1628–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010;363:24–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Shaw R, Robinson M. The increasing clinical relevance of human papillomavirus type 16 (HPV-16) infection in oropharyngeal cancer. Br J Oral Maxillofac Surg 2011;49:423–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Chien CY, Su CY, Fang FM, Huang HY, Chuang HC, Chen CM, et al. Lower prevalence but favorable survival for human papillomavirus-related squamous cell carcinoma of tonsil in Taiwan. Oral Oncol 2008;44:174–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Li W, Tran N, Lee CS, O’Brien CJ, Tse GM, Scolyer RA, et al. New evidence for geographic variation in the role of human papillomavirus in tonsillar carcinogenesis. Pathology 2007;39:217–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Chia-Hung Kao
    • 1
    • 3
    • 7
  • Shih-Chieh Lin
    • 2
  • Te-Chun Hsieh
    • 1
  • Kuo-Yang Yen
    • 1
    • 5
  • Shih-Neng Yang
    • 2
    • 5
  • Yao-Ching Wang
    • 2
  • Ji-An Liang
    • 2
    • 3
  • Chun-Hung Hua
    • 6
  • Shang-Wen Chen
    • 2
    • 3
    • 4
    • 8
  1. 1.Department of Nuclear Medicine and PET CenterChina Medical University HospitalTaichungTaiwan
  2. 2.Department of Radiation OncologyChina Medical University HospitalTaichungTaiwan
  3. 3.Institute of Clinical Medicine Science and School of Medicine, College of MedicineChina Medical UniversityTaichungTaiwan
  4. 4.Institute of Clinical Medicine Science and School of MedicineTaipei Medical UniversityTaipeiTaiwan
  5. 5.Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichungTaiwan
  6. 6.Department of OtorhinolaryngologyChina Medical University HospitalTaichungTaiwan
  7. 7.Department of Nuclear Medicine and PET centerChina Medical University HospitalTaichungTaiwan
  8. 8.Department of Radiation OncologyChina Medical University HospitalTaichungTaiwan

Personalised recommendations